WinSpice3 User's Manual

30 October, 2001
Mike Smith

Based on Spice 3 User Manual

by

T.Quarles, A.R.Newton, D.O.Pederson, A.Sangiovanni-Vincentelli

Department of Electrical Engineering and Computer Sciences

University of California

Berkeley, Ca., 94720

Table Of Contents

11
Introduction

1.1
Installation
1
1.2
Running WinSpice3
2
1.3
Uninstalling WinSpice3
4
1.4
Command Line Options
4
2
TYPES OF ANALYSIS
5
2.1
DC Analysis
5
2.2
AC Small-Signal Analysis
5
2.3
Transient Analysis
5
2.4
Pole-Zero Analysis
5
2.5
Small-Signal Distortion Analysis
5
2.6
Sensitivity Analysis
6
2.7
Noise Analysis
6
2.8
Analysis At Different Temperatures
6
3
CIRCUIT DESCRIPTION
8
3.1
General Structure And Conventions
8
3.2
Title Line, Comment Lines And .END Line
8
3.2.1
Title Line
8
3.2.2
.END Line
9
3.2.3
Comments
9
3.3
.MODEL: Device Models
9
3.4
Subcircuits
10
3.4.1
.SUBCKT Line
10
3.4.2
.ENDS Line
11
3.4.3
.GLOBAL Line
11
3.4.4
Xxxxx: Subcircuit Calls
11
3.5
Combining Files
11
3.5.1
.INCLUDE Lines
11
3.5.2
.LIB Lines
12
4
CIRCUIT ELEMENTS AND MODELS
13
4.1
Elementary Devices
13
4.1.1
Rxxxx: Resistors
13
4.1.1.1
Simple Resistors
13
4.1.1.2
Semiconductor Resistors
13
4.1.1.3
Semiconductor Resistor Model (R)
13
4.1.2
Cxxxx: Capacitors
14
4.1.2.1
Simple Capacitors
14
4.1.2.2
Semiconductor Capacitors
15
4.1.2.3
Semiconductor Capacitor Model (C)
15
4.1.3
Lxxxx: Inductors
16
4.1.4
Kxxxx: Coupled (Mutual) Inductors
16
4.1.5
Sxxxx and Wxxxx: Switches
16
4.1.5.1
Sxxxx: Voltage Controlled Switch
16
4.1.5.2
Wxxxx: Current Controlled Switch
16
4.1.5.3
Switch Model (SW/CSW)
17
4.2
Voltage And Current Sources
19
4.2.1
Ixxxx and Vxxxx: Independent Sources
19
4.2.1.1
PULSE(): Pulse
19
4.2.1.2
SIN(): Sinusoidal
20
4.2.1.3
EXP(): Exponential
21
4.2.1.4
PWL(): Piece-Wise Linear
21
4.2.1.5
SFFM(): Single-Frequency FM
22
4.2.2
Linear Dependent Sources
22
4.2.2.1
Gxxxx: Linear Voltage-Controlled Current Sources
22
4.2.2.2
Exxxx: Linear Voltage-Controlled Voltage Sources
22
4.2.2.3
Fxxxx: Linear Current-Controlled Current Sources
23
4.2.2.4
Hxxxx: Linear Current-Controlled Voltage Sources
23
4.2.3
Non-linear Dependent Sources using POLY()
23
4.2.3.1
Voltage-Controlled Current Sources
24
4.2.3.2
Voltage-Controlled Voltage Sources
24
4.2.3.3
Current-Controlled Current Sources
25
4.2.3.4
Current-Controlled Voltage Sources
25
4.2.4
Bxxxx: Non-linear Dependent Sources
26
4.3
Transmission Lines
27
4.3.1
Txxxx: Lossless Transmission Lines
27
4.3.2
Oxxxx: Lossy Transmission Lines
27
4.3.2.1
Lossy Transmission Line Model (LTRA)
27
4.3.3
Uxxxx: Uniform Distributed RC Lines (Lossy)
29
4.3.3.1
Uniform Distributed RC Model (URC)
29
4.4
Transistors And Diodes
30
4.4.1
Dxxxx: Junction Diodes
31
4.4.1.1
Diode Model (D)
31
4.4.2
Qxxxx: Bipolar Junction Transistors (BJTs)
32
4.4.2.1
BJT Models (NPN/PNP)
33
4.4.3
Jxxxx: Junction Field-Effect Transistors (JFETs)
35
4.4.3.1
JFET Models (NJF/PJF)
35
4.4.4
Mxxxx: MOSFETs
36
4.4.4.1
MOSFET Models (NMOS/PMOS)
37
4.4.5
Zxxxx: MESFETs
42
4.4.5.1
MESFET Models (NMF/PMF)
42
5
ANALYSES AND OUTPUT CONTROL
44
5.1
.OPTIONS: Simulator Variables
44
5.2
Initial Conditions
47
5.2.1
.NODESET: Specify Initial Node Voltage Guesses
47
5.2.2
.IC: Set Initial Conditions
48
5.3
Analyses
48
5.3.1
.AC: Small-Signal AC Analysis
48
5.3.2
.DC: DC Transfer Function
49
5.3.3
.DISTO: Distortion Analysis
49
5.3.4
.NOISE: Noise Analysis
50
5.3.5
.OP: Operating Point Analysis
51
5.3.6
.PZ: Pole-Zero Analysis
52
5.3.7
.SENS: DC or Small-Signal AC Sensitivity Analysis
52
5.3.8
.TF: Transfer Function Analysis
52
5.3.9
.TRAN: Transient Analysis
53
5.4
Batch Output
53
5.4.1
.SAVE Lines
53
5.4.2
.PRINT Lines
54
5.4.3
.PLOT Lines
55
5.4.4
.FOUR: Fourier Analysis of Transient Analysis Output
55
6
INTERACTIVE INTERPRETER
56
6.1
Command Interpretation
56
6.2
Variables
56
6.3
Variable Substitution
62
6.4
Redirection
63
6.5
Vectors & Scalars
63
6.5.1
Expressions
63
6.5.2
Functions
65
6.5.3
Constants
67
6.6
History Substitutions
67
6.6.1
Events and Their Specifications
67
6.6.2
Selectors
68
6.6.3
Modifiers
68
6.6.4
Special Conventions
69
6.7
Filename Expansions
70
6.8
Control Structures
70
6.8.1
While - End
70
6.8.2
Repeat - End
70
6.8.3
Dowhile - End
70
6.8.4
Foreach - End
71
6.8.5
If - Then - Else
71
6.8.6
Label
71
6.8.7
Goto
71
6.8.8
Continue
71
6.8.9
Break
71
6.9
Commands
72
6.9.1
Ac: Perform an AC frequency response analysis
72
6.9.2
Alias: Create an alias for a command
72
6.9.3
Alter: Change a device or model parameter
72
6.9.4
Asciiplot: Plot values using old-style character plots
72
6.9.5
Bug: Mail a bug report
73
6.9.6
Cd: Change directory
73
6.9.7
Cross: Create a new vector
73
6.9.8
Dc: Perform a DC-sweep analysis
73
6.9.9
Define: Define a function
73
6.9.10
Delete: Remove a trace or breakpoint
74
6.9.11
Destroy: Delete a data set (plot)
74
6.9.12
Diff: Compare vectors
74
6.9.13
Display: List known vectors and types
74
6.9.14
Disto: Perform a distortion analysis
74
6.9.15
Echo: Print text
75
6.9.16
Edit: Edit the current circuit
75
6.9.17
Fourier: Perform a fourier transform
75
6.9.18
Hardcopy: Save a plot to a file for printing
75
6.9.19
Help: Print summaries of WinSpice3 commands
75
6.9.20
History: Review previous commands
75
6.9.21
Iplot: Incremental plot
76
6.9.22
Let: Assign a value to a vector
76
6.9.23
Linearize: Interpolate to a linear scale
76
6.9.24
Listing: Print a listing of the current circuit
77
6.9.25
Load: Load rawfile data
77
6.9.26
Noise: Perform a noise analysis
77
6.9.27
Op: Perform an operating point analysis
77
6.9.28
Plot: Plot values on the display
77
6.9.29
Print: Print values
78
6.9.30
Pz: Perform a Pole-Zero Analysis
78
6.9.31
Quit: Leave WinSpice3
79
6.9.32
Rawfile: Send further results directly to a rawfile
79
6.9.33
Reset: Reset an analysis
79
6.9.34
Reshape: Alter the dimensionality or dimensions of a vector
79
6.9.35
Resume: Continue a simulation after a stop
79
6.9.36
Run: Run analysis from the input file
79
6.9.37
Rusage: Resource usage
80
6.9.38
Save: Save a set of output vectors
81
6.9.39
Sens: Run a sensitivity analysis
81
6.9.40
Set: Set the value of a variable
81
6.9.41
Setcirc: Change the current circuit
81
6.9.42
Setplot: Switch the current set of vectors
82
6.9.43
Setscale: Set the scale for a plot
82
6.9.44
Settype: Set the type of a vector
83
6.9.45
Shell: Call the command interpreter
83
6.9.46
Shift: Alter a list variable
84
6.9.47
Show: List device state
84
6.9.48
Showmod: List model parameter values
84
6.9.49
Source: Read a WinSpice3 input file
84
6.9.50
Spec: Generate a Fourier transform vector
85
6.9.51
Status: Display breakpoint and trace information
85
6.9.52
Step: Run a fixed number of time points
86
6.9.53
Stop: Set a breakpoint
86
6.9.54
Strcmp: Compare strings
86
6.9.55
Tf: Run a Transfer Function analysis
87
6.9.56
Trace: Trace nodes
87
6.9.57
Tran: Perform a transient analysis
87
6.9.58
Transpose: Swap the elements in a multi-dimensional data set
87
6.9.59
Tutorial: Display hypertext help
87
6.9.60
Unalias: Retract an alias
87
6.9.61
Undefine: Retract a definition
88
6.9.62
Unlet: Delete vectors
88
6.9.63
Unset: Clear a variable
88
6.9.64
Version: Print the version of WinSpice
88
6.9.65
Where: Identify troublesome node or device
88
6.9.66
Write: Write data to a file
88
6.10
Miscellaneous
89
6.11
Bugs
89
7
CONVERGENCE
90
7.1
Solving Convergence Problems
90
7.2
What is Convergence? (or Non-Convergence!)
90
7.3
SPICE3 - New Convergence Algorithms
91
7.4
Non-Convergence Error Messages/Indications
91
7.5
Convergence Solutions
91
7.5.1
DC Convergence Solutions
91
7.5.2
DC Sweep Convergence Solutions
93
7.5.3
Transient Convergence Solutions
94
7.5.4
Special Cases
95
7.5.5
WinSpice3 Convergence Helpers
95
8
BIBLIOGRAPHY
97
9
APPENDIX A: EXAMPLE CIRCUITS
98
9.1
Circuit 1: Differential Pair
98
9.2
Circuit 2: MOSFET Characterisation
98
9.3
Circuit 3: RTL Inverter
98
9.4
Circuit 4: Four-Bit Binary Adder
99
9.5
Circuit 5: Transmission-Line Inverter
100
10
APPENDIX B: MODEL AND DEVICE PARAMETERS
101
10.1
URC: Uniform R.C. line
102
10.2
ASRC: Arbitrary Source
102
10.3
BJT: Bipolar Junction Transistor
102
10.4
BSIM1: Berkeley Short Channel IGFET Model
105
10.5
BSIM2: Berkeley Short Channel IGFET Model
107
10.6
Capacitor: Fixed capacitor
111
10.7
CCCS: Current controlled current source
112
10.8
CCVS: Linear current controlled current source
112
10.9
CSwitch: Current controlled ideal switch
113
10.10
Diode: Junction Diode model
113
10.11
Inductor: Inductors
114
10.12
mutual: Mutual inductors
115
10.13
Isource: Independent current source
115
10.14
JFET: Junction Field effect transistor
116
10.15
LTRA: Lossy transmission line
117
10.16
MES: GaAs MESFET model
118
10.17
Mos1: Level 1 MOSFET model with Meyer capacitance model
119
10.18
Mos2: Level 2 MOSFET model with Meyer capacitance model
121
10.19
Mos3: Level 3 MOSFET model with Meyer capacitance model
124
10.20
Mos6: Level 6 MOSFET model with Meyer capacitance model
128
10.21
Resistor: Simple resistor
131
10.22
Switch: Ideal voltage controlled switch
131
10.23
Tranline: Lossless transmission line
132
10.24
VCCS: Voltage controlled current source
132
10.25
VCVS: Voltage controlled voltage source
133
10.26
Vsource: Independent voltage source
133

1 Introduction

WinSpice3 is a general-purpose circuit simulation program for non-linear DC, non-linear transient, and linear AC analyses. Circuits may contain resistors, capacitors, inductors, mutual inductors, independent voltage and current sources, four types of dependent sources, lossless and lossy transmission lines (two separate implementations), switches, uniform distributed RC lines, and the five most common semiconductor devices: diodes, BJTs, JFETs, MESFETs, and MOSFETs.

WinSpice3 is based on Spice3F4
 which in turn was developed from SPICE2G.6. While WinSpice3 is being developed to include new features, it continues to support those capabilities and models which remain in extensive use in the SPICE2 program.

1.1 Installation

WinSpice3 is supplied as a self-extracting .ZIP file called SPICE3.EXE. When executed, the setup files for WinSpice are placed in the directory defined by the TEMP environment string by default as shown below.

[image: image1.png]| WinZip Self-Extractor [SPICE3.EXE]

To e fes N SFICEIEE othe specied [
Todet e he L ton I
Une ToFoer RunwiiZi
Cose
IV Ovenwiite Files Without Prompting
= e sbout
e

© Nico Mak Computing,Inc. W pinzip com

If you want to unzip to a different directory, edit the folder path.

Now, click on the Unzip button to unpack the setup files. Navigate to the folder containing the unzipped files and run setup.exe by double clicking on its icon. The dialogue shown below should appear.

[image: image2.png][Welcome

‘Welcame o the WinSpice3 Setup program, This program wil
installWinSpice3 on your computer,

Itis stiongly recommended that you et al Windows programs
before tunring this Setup progiam.

Clck Cancel o quit Setup and then close any programs you have.
urring. Clik Nest o cotinue it the Setup program.

WARNING: This program s potected by copyrigh law and
intemalional reaies.

Unauthorized reprodhcion or distbution of this program, or any
parton of i, may result in severe civl and ciminal penakies. and
wilbe prosecuied t the masim.m et possible undet fa.

i3] Concel

Make sure you read the readme.txt file which might contain some useful information and give details of how to contact the author (it is amazing how many people don’t read ANY of the documents – when in doubt RTFM!!).

Note that WinSpice3 adds no files to the Windows directories!

1.2 Running WinSpice3

Click on ‘Start’, point to ‘Programs’ and find the WinSpice3 popout. Click on ‘wspice3’ to run the program. The following window (or something like it) will appear:-

[image: image3.png]Z:\SPICE3\WSPICE3.EXE [_[OIx]
Ele Help
Progran: Vinspice, versio
bate built: Jul 16 1998 0

0.03 (based on Berkeley Spice 3¢5) fj
1

Type “help” for more information, “quit" to leave.

winspice 1 ->

This window emulates a terminal window as is seen in versions of Spice3 running on Unix machines.

At this point, WinSpice3 will accept numerous commands typed in at the keyboard (see section 6.9 for details of the commands supported). The command interpreter is based on the Unix C-shell and it is possible to write complex programs with it. For example, the setplot command (see section 6.9.42) is implemented using such a ‘script’ (look in the lib\script directory in the directory WinSpice3 is installed in for the script).

However, since you haven’t read that far yet, the quickest way of running a simulation is to open one of the circuit files in the examples directory. To do this, click ‘File’, ‘Open’. The dialogue box shown below will appear.

[image: image4.png]Open ci

Lok [5o

Doc. work
Eurpes @Demac
o SDenor e
an SDemzcr
Notes = vtk
et

f—

Open
Files of ype: [Cicui Fies < Cancel

T~ Open as read-only

Double click on ‘Examples’ and then double click on ‘Phonoamp.cir’. As soon as the file is loaded, it begins simulating the circuit and generating plot windows as it goes. Make one of the plot windows the active window.

[image: image5.png][_[OIx]

ac1: phonoamp
Ble Edt

nag(v(1)/vLfbranch)

KOhns

500.0

100 10°3 10°4 10°5
frequency

1

Bz

The plot can be resized by dragging the window border. The plot can be printed to the default printer by clicking on ‘File’, ‘Print’. The plot can be copied to the clipboard by clicking ‘Edit’, ‘Copy’ and then pasting the plot into a document e.g.

[image: image6.png]nag(v(1)/vLfbranch)

KOhns

500.0

100 10°3 10°4 10°5
frequency

1

Bz

You can also zoom into an area of a plot by clicking on the graph and dragging the mouse to select the required area. A zoomed-in graph will be displayed when you release the mouse button.

A tutorial, in the form of a Word document, is also provided and you should run this tutorial to understand some of the basic concepts of WinSpice3.

1.3 Uninstalling WinSpice3

Use the ‘Add/Remove Programs’ applet in the Control Panel to uninstall the program.

1.4 Command Line Options

wspice3 [-n][-b][-i][-r rawfile] [input file ...]

Options are:

-n (or -N)
Don't try to source the file .spiceinit upon start-up. Normally WinSpice3 tries to find the file in the current directory, and if it is not found then in the directory containing the WinSpice3 program.

-b
Batch mode. Simulates the input file and writes the results to a rawfile. After the circuit has been simulated, WinSpice will exit.

-i
Interactive mode (default). WinSpice simulates the input file and continues running. It then monitors the state of the input file. If it changes in any way, WinSpice will reload the circuit.

-r rawfile
Specifies the name of the output rawfile. This causes WinSpice to output results directly to the file.

Further arguments to WinSpice3 are taken to be SPICE3 input files, which are read and saved (if running in batch mode then they are run immediately). WinSpice3 accepts most SPICE2 input files, and output ASCII plots, Fourier analyses, and node printouts as specified in .plot, .four, and .print cards. If an out parameter is given on a .width card, the effect is the same as set width = Since WinSpice3 ASCII plots do not use multiple ranges, however, if vectors together on a .plot card have different ranges they do not provide as much information as they would in SPICE2. The output of WinSpice3 is also much less verbose than SPICE2, in that the only data printed is that requested by the above cards.

2 TYPES OF ANALYSIS
2.1 DC Analysis

The DC analysis portion of SPICE determines the DC operating point of the circuit with inductors shorted and capacitors opened. The DC analysis options are specified on the .DC, .TF, and .OP control lines. A DC analysis is automatically performed prior to a transient analysis to determine the transient initial conditions, and prior to an AC small-signal analysis to determine the linearized, small-signal models for non-linear devices. If requested, the DC small-signal value of a transfer function (ratio of output variable to input source), input resistance, and output resistance is also computed as a part of the DC solution. The DC analysis can also be used to generate DC transfer curves: a specified independent voltage or current source is stepped over a user-specified range and the DC output variables are stored for each sequential source value.

2.2 AC Small-Signal Analysis

The AC small-signal portion of WinSpice3 computes the AC output variables as a function of frequency. The program first computes the DC operating point of the circuit and determines linearized, small-signal models for all of the non-linear devices in the circuit. The resultant linear circuit is then analysed over a user-specified range of frequencies. The desired output of an AC small-signal analysis is usually a transfer function (voltage gain, transimpedance, etc.). If the circuit has only one AC input, it is convenient to set that input to unity and zero phase, so that output variables have the same value as the transfer function of the output variable with respect to the input.

2.3 Transient Analysis

The transient analysis portion of WinSpice3 computes the transient output variables as a function of time over a user-specified time interval. The initial conditions are automatically determined by a DC analysis. All sources which are not time dependent (for example, power supplies) are set to their DC value. The transient time interval is specified on a .TRAN control line.

2.4 Pole-Zero Analysis

The pole-zero analysis portion of WinSpice3 computes the poles and/or zeros in the small-signal AC transfer function. The program first computes the DC operating point and then determines the linearized, small-signal models for all the non-linear devices in the circuit. This circuit is then used to find the poles and zeros of the transfer function.

Two types of transfer functions are allowed: one of the form (output voltage)/(input voltage) and the other of the form (output voltage)/(input current). These two types of transfer functions cover all the cases and one can find the poles/zeros of functions like input/output impedance and voltage gain. The input and output ports are specified as two pairs of nodes.

The pole-zero analysis works with resistors, capacitors, inductors, linear-controlled sources, independent sources, BJTs, MOSFETs, JFETs and diodes. Transmission lines are not supported.

The method used in the analysis is a sub-optimal numerical search. For large circuits it may take a considerable time or fail to find all poles and zeros. For some circuits, the method becomes "lost" and finds an excessive number of poles or zeros.

2.5 Small-Signal Distortion Analysis

The distortion analysis portion of WinSpice3 computes steady-state harmonic and intermodulation products for small input signal magnitudes. If signals of a single frequency are specified as the input to the circuit, the complex values of the second and third harmonics are determined at every point in the circuit. If there are signals of two frequencies input to the circuit, the analysis finds out the complex values of the circuit variables at the sum and difference of the input frequencies, and at the difference of the smaller frequency from the second harmonic of the larger frequency.

Distortion analysis is supported for the following non-linear devices: diodes (DIO), BJT, JFET, MOSFETs (levels 1, 2, 3, 4/BSIM1, 5/BSIM2, and 6) and MESFETs. All linear devices are automatically supported by distortion analysis. If there are switches present in the circuit, the analysis continues to be accurate provided the switches do not change state under the small excitations used for distortion calculations.

2.6 Sensitivity Analysis

WinSpice3 will calculate either the DC operating-point sensitivity or the AC small-signal sensitivity of an output variable with respect to all circuit variables, including model parameters. WinSpice3 calculates the difference in an output variable (either a node voltage or a branch current) by perturbing each parameter of each device independently. Since the method is a numerical approximation, the results may demonstrate second order affects in highly sensitive parameters, or may fail to show very low but non-zero sensitivity. Further, since each variable is perturbed by a small fraction of its value, zero-valued parameters are not analysed (this has the benefit of reducing what is usually a very large amount of data).

2.7 Noise Analysis

The noise analysis portion of WinSpice3 does analysis device-generated noise for the given circuit. When provided with an input source and an output port, the analysis calculates the noise contributions of each device (and each noise generator within the device) to the output port voltage. It also calculates the input noise to the circuit, equivalent to the output noise referred to the specified input source. This is done for every frequency point in a specified range - the calculated value of the noise corresponds to the spectral density of the circuit variable viewed as a stationary gaussian stochastic process.

After calculating the spectral densities, noise analysis integrates these values over the specified frequency range to arrive at the total noise voltage/current (over this frequency range). This calculated value corresponds to the variance of the circuit variable viewed as a stationary gaussian process.

2.8 Analysis At Different Temperatures

All input data for WinSpice3 is assumed to have been measured at a nominal temperature of 27 C, which can be changed by use of the TNOM parameter on the .OPTION control line. This value can further be overridden for any device which models temperature effects by specifying the TNOM parameter on the model itself. The circuit simulation is performed at a temperature of 27 C, unless overridden by a TEMP parameter on the .OPTION control line. Individual instances may further override the circuit temperature through the specification of a TEMP parameter on the instance.

Temperature dependent support is provided for resistors, capacitors, diodes, JFETs, BJTs, and level 1, 2, and 3 MOSFETs. BSIM (levels 4 and 5) MOSFETs have an alternate temperature dependency scheme that adjusts all of the model parameters before input to SPICE. For details of the BSIM temperature adjustment, see [6] and [7].

Temperature appears explicitly in the exponential terms of the BJT and diode model equations. In addition, saturation currents have built-in temperature dependence. The temperature dependence of the saturation current in the BJT models is determined by:

[image: image7.wmf](

)

(

)

I

T

I

T

T

T

E

q

T

T

k

T

T

S

S

XTI

g

(

)

(

)

exp

1

0

1

0

1

0

1

0

=

æ

è

ç

ö

ø

÷

-

æ

è

ç

ö

ø

÷

where k is Boltzmann's constant, q is the electronic charge, Eg is the energy gap which is a model parameter, and XTI is the saturation current temperature exponent (also a model parameter, and usually equal to 3).

The temperature dependence of forward and reverse beta is according to the formula:

[image: image8.wmf](

)

(

)

b

b

T

T

T

T

XTB

1

0

1

0

=

æ

è

ç

ö

ø

÷

where T1 and T0 are in degrees Kelvin, and XTB is a user-supplied model parameter. Temperature effects on beta are carried out by appropriate adjustment to the values of R, and ISC (WinSpice3 model parameters BF, ISE, BR, and ISC, respectively).
F, ISE,
Temperature dependence of the saturation current in the junction diode model is determined by:

[image: image9.wmf](

)

(

)

(

)

(

)

I

T

I

T

T

T

E

q

T

T

Nk

T

T

S

S

XTI

N

g

1

0

1

0

1

0

1

0

=

æ

è

ç

ö

ø

÷

-

æ

è

ç

ö

ø

÷

exp

where N is the emission coefficient, which is a model parameter, and the other symbols have the same meaning as above. Note that for Schottky barrier diodes, the value of the saturation current temperature exponent, XTI, is usually 2.

Temperature appears explicitly in the value of junction potential, (in WinSpice3 PHI), for all the device models. The temperature dependence is determined by:

[image: image10.wmf](

)

(

)

F

T

kT

q

N

N

N

T

e

a

d

i

=

æ

è

ç

ö

ø

÷

log

2

where k is Boltzmann's constant, q is the electronic charge, Na is the acceptor impurity density, Nd is the donor impurity density, Ni is the intrinsic carrier concentration, and Eg is the energy gap.

Temperature appears explicitly in the value of surface mobility, 0 (or UO), for the MOSFET model. The temperature dependence is determined by:

[image: image11.wmf](

)

(

)

5

.

1

0

0

0

0

÷

÷

ø

ö

ç

ç

è

æ

=

T

T

T

T

m

m

The effects of temperature on resistors is modelled by the formula:

[image: image12.wmf](

)

(

)

(

)

(

)

[

]

R

T

R

T

TC

T

T

TC

T

T

=

+

-

+

-

0

1

0

2

0

2

1

where T is the circuit temperature, T0 is the nominal temperature, and TC1 and TC2 are the first- and second-order temperature coefficients.

3 CIRCUIT DESCRIPTION

3.1 General Structure And Conventions

The circuit to be analysed is described to WinSpice3 by a set of element lines, which define the circuit topology and element values, and a set of control lines, which define the model parameters and the run controls. The first line in the input file must be the title, and the last line must be ".END". The order of the remaining lines is arbitrary (except, of course, that continuation lines must immediately follow the line being continued).

An element line that contains the element name, the circuit nodes to which the element is connected, and the values of the parameters that determine the electrical characteristics of the element specify each element in the circuit. The first letter of the element name specifies the element type. The format for the SPICE element types is given in what follows. The strings XXXXXXX, YYYYYYY, and ZZZZZZZ denote arbitrary alphanumeric strings. For example, a resistor name must begin with the letter R and can contain one or more characters. Hence, R, R1, RSE, ROUT, and R3AC2ZY are valid resistor names. Details of each type of device are supplied in a following section.

Fields on a line are separated by one or more blanks, a comma, an equal ('=') sign, or a left or right parenthesis; extra spaces are ignored. A line may be continued by entering a '+' (plus) in column 1 of the following line; WinSpice3 continues reading beginning with column 2.

A name field must begin with a letter (A through Z) and cannot contain any delimiters.

A number field may be an integer field (12, -44), a floating point field (3.14159), either an integer or floating point number followed by an integer exponent (1e-14, 2.65e3), or either an integer or a floating point number followed by one of the following scale factors:

T = 1012
G = 109
Meg = 106
K = 103
mil = 25.4-6

m = 10-3
u (or M) = 10-6
N = 10-9
p = 10-12
f = 10-15

Letters immediately following a number that are not scale factors are ignored, and letters immediately following a scale factor are ignored. Hence, 10, 10V, 10Volts, and 10Hz all represent the same number, and M, MA, MSec, and MMhos all represent the same scale factor. Note that 1000, 1000.0, 1000Hz, 1e3, 1.0e3, 1KHz, and 1K all represent the same number.

Nodes names may be arbitrary character strings. The datum (ground) node must be named '0'. Note the difference in WinSpice3 where the nodes are treated as character strings and not evaluated as numbers, thus '0' and '00' are distinct nodes in WinSpice3 but not in SPICE2. The circuit cannot contain a loop of voltage sources and/or inductors and cannot contain a cut-set of current sources and/or capacitors.

Each node in the circuit must have a DC path to ground.

Every node must have at least two connections except for transmission line nodes (to permit unterminated transmission lines) and MOSFET substrate nodes (which have two internal connections anyway).

3.2 Title Line, Comment Lines And .END Line

3.2.1 Title Line

Examples:

POWER AMPLIFIER CIRCUIT

TEST OF CAM CELL

The title line must be the first in the input file. Its contents are printed verbatim as the heading for each section of output.

3.2.2 .END Line

Examples:

.END

The "End" line must always be the last in the input file. Note that the period is an integral part of the name.

3.2.3 Comments

General Form:

* <any comment>

Examples:

* RF=1K Gain should be 100

* Check open-loop gain and phase margin

The asterisk in the first column indicates that this line is a comment line. Comment lines may be placed anywhere in the circuit description. Note that WinSpice3 also considers any line with leading white space to be a comment.

3.3 .MODEL: Device Models

General form:

.MODEL MNAME TYPE(PNAME1=PVAL1 PNAME2=PVAL2 ...)

Examples:

.MODEL MOD1 NPN (BF=50 IS=1E-13 VBF=50)

Most simple circuit elements typically require only a few parameter values. However, some devices (semiconductor devices in particular) that are included in WinSpice3 require many parameter values. Often, many devices in a circuit are defined by the same set of device model parameters. For these reasons, a set of device model parameters is defined on a separate .MODEL line and assigned a unique model name. The device element lines in WinSpice3 then refer to the model name.

For these more complex device types, each device element line contains the device name, the nodes to which the device is connected, and the device model name. In addition, other optional parameters may be specified for some devices: geometric factors and an initial condition (see the following section on Transistors and Diodes for more details).

MNAME in the above is the model name, and type is one of the following types:

R
Semiconductor resistor model

C
Semiconductor capacitor model

SW
VSWITCH
Voltage controlled switch

CSW
ISWITCH
Current controlled switch

URC
Uniform distributed RC model

LTRA
Lossy transmission line model

D
Diode model

NPN
NPN BJT model

PNP
PNP BJT model

NJF
N-channel JFET model

PJF
P-channel JFET model

NMOS
N-channel MOSFET model

PMOS
P-channel MOSFET model

NMF
N-channel MESFET model

PMF
P-channel MESFET model

Parameter values are defined by appending the parameter name followed by an equal sign and the parameter value. Model parameters that are not given a value are assigned the default values given below for each model type. Models, model parameters, and default values are listed in the next section along with the description of device element lines.

3.4 Subcircuits

A subcircuit that consists of WinSpice3 elements can be defined and referenced in a fashion similar to device models. The subcircuit is defined in the input file by a grouping of element lines; the program then automatically inserts the group of elements wherever the subcircuit is referenced. There is no limit on the size or complexity of subcircuits, and subcircuits may contain other subcircuits. An example of subcircuit usage is given in Appendix A.

3.4.1 .SUBCKT Line

General form:

.SUBCKT subnam N1 <N2 N3 ...>

Examples:

.SUBCKT OPAMP 1 2 3 4

A circuit definition is begun with a .SUBCKT line. SUBNAM is the subcircuit name, and N1, N2, are the external nodes, which cannot be zero. The group of element lines which immediately follow the .SUBCKT line define the subcircuit. The last line in a subcircuit definition is the .ENDS line (see below). Control lines may not appear within a subcircuit definition; however, subcircuit definitions may contain anything else, including other subcircuit definitions, device models, and subcircuit calls (see below). Note that any device models or subcircuit definitions included as part of a subcircuit definition are strictly local (i.e., such models and definitions are not known outside the subcircuit definition). Also, any element nodes not included on the .SUBCKT line are strictly local, with the exception of 0 (ground) which is always global.

Other nodes can be made global by using the .GLOBAL directive.

3.4.2 .ENDS Line

General form:

.ENDS <SUBNAM>

Examples:

.ENDS OPAMP

The "Ends" line must be the last one for any subcircuit definition. The subcircuit name, if included, indicates which subcircuit definition is being terminated; if omitted, all subcircuits being defined are terminated. The name is needed only when nested subcircuit definitions are being made.

3.4.3 .GLOBAL Line

General form:

.GLOBAL N1 <N2 N3 ...>

Examples:

.GLOBAL 1 2 3 9

This line defines a set of global nodes. These nodes are not affected by subcircuit expansion.

3.4.4 Xxxxx: Subcircuit Calls

General form:

XYYYYYYY N1 <N2 N3 ...> SUBNAM

Examples:

X1 2 4 17 3 1 MULTI

Subcircuits are used in SPICE by specifying pseudo-elements beginning with the letter X, followed by the circuit nodes to be used in expanding the subcircuit.

3.5 Combining Files

3.5.1 .INCLUDE Lines

General form:

.INCLUDE filename

.INCLUDE “filename with spaces.cir”

Examples:

.INCLUDE \users\spice\common\wattmeter.cir

.INCLUDE “\users\spice files\wattmeter.cir”

Frequently, portions of circuit descriptions will be reused in several input files, particularly with common models and subcircuits. In any SPICE input file, the .include line may be used to copy some other file as if that second file appeared in place of the ".include" line in the original file. There is no restriction on the file name imposed by SPICE beyond those imposed by the local operating system.

If the filename or path contain spaces, double quote marks must be used.

3.5.2 .LIB Lines

General form:

.LIB filename

.LIB “filenamewith spaces”

Examples:

.LIB \users\spice\common\bipolar.lib

This is an extension, not found in the Berkeley version of SPICE3, that provides backward compatibility with PSPICE.

The .LIB line is similar to the .INCLUDE line except that the specified file is assumed to contain .MODEL and .SUBCKT definitions. WinSpice3 searches for any undefined models or subcircuits in the specified file and extracts the required definitions and pastes them into the circuit. The main difference is that because it only extracts parts of the specified file and does not include the whole file in your circuit, the .LIB line uses far less memory.

The input file can have any extension, but by convention has the extension .lib.

If the filename or path contain spaces, double quote marks must be used.

4 CIRCUIT ELEMENTS AND MODELS

Data fields that are enclosed in less-than and greater-than signs ('< >') are optional. All indicated punctuation (parentheses, equal signs, etc.) is optional but indicate the presence of any delimiter. Further, future implementations may require the punctuation as stated. A consistent style adhering to the punctuation shown here makes the input easier to understand. With respect to branch voltages and currents, WinSpice3 uniformly uses the associated reference convention (current flows in the direction of voltage drop).

4.1 Elementary Devices

4.1.1 Rxxxx: Resistors

4.1.1.1 Simple Resistors

General form:

RXXXXXXX N1 N2 VALUE

Examples:

R1 1 2 100

RC1 12 17 1K

N1 and N2 are the two element nodes. VALUE is the resistance (in ohms) and may be positive or negative but not zero.

4.1.1.2 Semiconductor Resistors

General form:

RXXXXXXX N1 N2 <VALUE> <MNAME> <L=LENGTH> <W=WIDTH> <TEMP=T>

Examples:

RLOAD 2 10 10K

RMOD 3 7 RMODEL L=10u W=1u

This is the more general form of the resistor presented in section 4.1.1.1, and allows the modelling of temperature effects and for the calculation of the actual resistance value from strictly geometric information and the specifications of the process.

If VALUE is specified, it overrides the geometric information and defines the resistance. If MNAME is specified, then the resistance may be calculated from the process information in the model MNAME and the given LENGTH and WIDTH. If VALUE is not specified, then MNAME and LENGTH must be specified. If WIDTH is not specified, then it is taken from the default width given in the model. The (optional) TEMP value is the temperature at which this device is to operate, and overrides the temperature specification on the .OPTION control line.

4.1.1.3 Semiconductor Resistor Model (R)

The resistor model consists of process-related device data that allow the resistance to be calculated from geometric information and to be corrected for temperature.

The parameters available are:

name
parameter
units
default
example

TC1
first order temperature coefficient
C/
0.0
-

TC2
second order temperature coefficient.
C2/
0.0
-

RSH
sheet resistance
/square
-
50

DEFW
default width
meters
1e-6
2e-6

NARROW
narrowing due to side etching
meters
0.0
1e-7

TNOM
parameter measurement temperature
C
27
50

The sheet resistance is used with the narrowing parameter and L and W from the resistor device to determine the nominal resistance by the formula

[image: image13.wmf]R

RSH

L

NARROW

W

NARROW

=

-

-

DEFW is used to supply a default value for W if one is not specified for the device. If either RSH or L is not specified, then the standard default resistance value of 1k Z is used.

TNOM is used to override the circuit-wide value given on the .OPTIONS control line where the parameters of this model have been measured at a different temperature. After the nominal resistance is calculated, it is adjusted for temperature by the formula:

[image: image14.wmf](

)

(

)

(

)

(

)

[

]

R

T

R

T

TC

T

T

TC

T

T

=

+

-

+

-

0

1

0

2

0

2

1

4.1.2 Cxxxx: Capacitors

4.1.2.1 Simple Capacitors

General form:

CXXXXXXX N+ N- VALUE <IC=INCOND>

Examples:

CBYP 13 0 1UF

COSC 17 23 10U IC=3V

N+ and N- are the positive and negative element nodes, respectively. VALUE is the capacitance in Farads.

The (optional) initial condition is the initial (time- zero) value of capacitor voltage (in Volts). Note that the initial conditions (if any) apply 'only' if the UIC option is specified on the .TRAN control line.

NOTE: unlike Spice2, non-linear capacitors using POLY are not directly supported by WinSpice3. However, they can be simulated using non-linear current and voltage sources. Voltage and temperature dependent capacitance can be simulated using the capacitor model described in section 4.1.2.3.

4.1.2.2 Semiconductor Capacitors

General form:

CXXXXXXX N1 N2 <VALUE> <MNAME> <L=LENGTH> <W=WIDTH> <IC=VAL>

Examples:

CLOAD 2 10 10P

CMOD 3 7 CMODEL L=10u W=1u

This is the more general form of the Capacitor presented in section 4.1.2.1, and allows for the calculation of the actual capacitance value from strictly geometric information and the specifications of the process.

If VALUE is specified, it defines the capacitance. If MNAME is specified, then the capacitance is calculated from the process information in the model MNAME and the given LENGTH and WIDTH. If VALUE is not specified, then MNAME and LENGTH must be specified. If WIDTH is not specified, then it is taken from the default width given in the model. Either VALUE or MNAME, LENGTH, and WIDTH may be specified, but not both sets.

4.1.2.3 Semiconductor Capacitor Model (C)

The capacitor model contains process information that may be used to compute the capacitance from strictly geometric information.

name
parameter
units
default
example

TNOM
parameter measurement temperature
C
27
50

TC1
first order temperature coefficient
C/
0.0
-

TC2
second order temperature coefficient.
C2/
0.0
-

VC1
first order voltage coefficient
volt-1
0.0
-

VC2
second order voltage coefficient.
volt-2
0.0
-

CJ
junction bottom capacitance
F/meters2
-
5e-5

CJSW
junction side wall capacitance
F/meters
-
2e-11

DEFW
default device width
meters
1e-6
2e-6

NARROW
narrowing due to side etching
meters
0.0
1e-7

The capacitor has a capacitance computed as

[image: image15.wmf](

)

(

)

(

)

NARROW

WIDTH

LENGTH

CJSW

NARROW

WIDTH

NARROW

LENGTH

CJ

CAP

2

2

-

+

+

-

-

=

TNOM is used to override the circuit-wide value given on the .OPTIONS control line where the parameters of this model have been measured at a different temperature.

After the nominal capacitance is calculated above, it is adjusted for temperature and voltage nonlinearity by the formula:-

[image: image16.wmf](

)

(

)

(

)

(

)

2

2

1

2

2

1

1

1

nom

nom

cap

cap

eff

T

T

TC

T

T

TC

V

VC

V

VC

CAP

C

-

+

-

+

×

+

×

+

=

4.1.3 Lxxxx: Inductors

General form:

LYYYYYYY N+ N- VALUE <IC=INCOND>

Examples:

LLINK 42 69 1UH

LSHUNT 23 51 10U IC=15.7MA

N+ and N- are the positive and negative element nodes, respectively. VALUE is the inductance in Henries.

The (optional) initial condition is the initial (time-zero) value of inductor current (in Amps) that flows from N+, through the inductor, to N-. Note that the initial conditions (if any) apply only if the UIC option is specified on the .TRAN analysis line.

NOTE: unlike Spice2, non-linear inductors are not directly supported by WinSpice3. However, they can be simulated using non-linear current and voltage sources.

4.1.4 Kxxxx: Coupled (Mutual) Inductors

General form:

KXXXXXXX LYYYYYYY LZZZZZZZ VALUE

Examples:

K43 LAA LBB 0.999

KXFRMR L1 L2 0.87

LYYYYYYY and LZZZZZZZ are the names of the two coupled inductors, and VALUE is the coefficient of coupling, K, which must be greater than 0 and less than or equal to 1. Using the 'dot' convention, place a 'dot' on the first node of each inductor.

4.1.5 Sxxxx and Wxxxx: Switches

4.1.5.1 Sxxxx: Voltage Controlled Switch

General form:

SXXXXXXX N+ N- NC+ NC- MODEL <ON><OFF>

Examples:

s1 1 2 3 4 switch1 ON

s2 5 6 3 0 sm2 off

Switch1 1 2 10 0 smodel1

Nodes 1 and 2 are the nodes between which the switch terminals are connected. The model name is mandatory while the initial conditions are optional. Nodes 3 and 4 are the positive and negative controlling nodes respectively.

4.1.5.2 Wxxxx: Current Controlled Switch

General form:

WYYYYYYY N+ N- VNAM MODEL <ON><OFF>

Examples:

w1 1 2 vclock switchmod1

W2 3 0 vramp sm1 ON

wreset 5 6 vclck lossyswitch OFF

Nodes 1 and 2 are the nodes between which the switch terminals are connected. The model name is mandatory while the initial conditions are optional. The controlling current is that through the specified voltage source. The direction of positive controlling current flow is from the positive node, through the source, to the negative node.

4.1.5.3 Switch Model (SW/CSW)

General form:

.MODEL MNAME TYPE(PNAME1=PVAL1 PNAME2=PVAL2 ...)

Examples:

.MODEL SMOD SW(RON=5M ROFF=10E9 VT=1.0 VH=0.1)

.MODEL SMOD VSWITCH(RON=5M ROFF=10E9 VON=1.1 VOFF=0.9)

.MODEL SMOD CSW(RON=5M ROFF=10E9 IT=0.5MA IH=0.5MA)

.MODEL SMOD ISWITCH(RON=5M ROFF=10E9 ION=1.0MA IOFF=0)

The VSWITCH and ISWITCH forms of the model show above are provided for compatibility with PSPICE.

The switch model allows an almost ideal switch to be described in WinSpice3. The switch is not quite ideal, in that the resistance can not change from 0 to infinity, but must always have a finite positive value. By proper selection of the on and off resistances, they can be effectively zero and infinity in comparison to other circuit elements.

The parameters available are:

name
parameter
units
default
switch

VT
threshold voltage
Volts
0.0
S

VH
hysteresis voltage
Volts
0.0
S

VON
threshold voltage
Volts
0.0
S

VOFF
threshold voltage
Volts
0.0
S

IT
threshold current
Amps
0.0
W

IH
hysteresis current
Amps
0.0
W

ION
threshold current
Amps
0.0
W

IOFF
threshold current
Amps
0.0
W

RON
on resistance

1.0
both

ROFF
off resistance

1/GMIN*
both

*(See the .OPTIONS control line for a description of GMIN, its default value results in an off-resistance of 1.0e+12 ohms.)

For the voltage controlled switch, the switch is in the ON state if

[image: image17.wmf])

(

VH

VT

V

ctrl

+

>

if VT and VH are defined or

[image: image18.wmf])

(

VON

V

ctrl

>

if VON is defined. It is in the OFF state if

[image: image19.wmf])

(

VH

VT

V

ctrl

-

<

if VT and VH are defined or

[image: image20.wmf])

(

VOFF

V

ctrl

<

if VOFF is defined.

For the current controlled switch, the switch is in the ON state if

[image: image21.wmf])

(

IH

IT

I

ctrl

+

>

if IT and IH are defined or

[image: image22.wmf])

(

ION

I

ctrl

>

if ION is defined.

and is in the OFF state if

[image: image23.wmf])

(

IH

IT

I

ctrl

-

<

if IT and IH are defined or

[image: image24.wmf])

(

IOFF

I

ctrl

<

if IOFF is defined.

The use of an ideal element that is highly non-linear such as a switch can cause large discontinuities to occur in the circuit node voltages. A rapid change such as that associated with a switch changing state can cause numerical roundoff or tolerance problems leading to erroneous results or timestep difficulties. The user of switches can improve the situation by taking the following steps:

First, it is wise to set ideal switch impedances just high or low enough to be negligible with respect to other circuit elements. Using switch impedances that are close to "ideal" in all cases aggravates the problem of discontinuities mentioned above. Of course, when modelling real devices such as MOSFETs, the on resistance should be adjusted to a realistic level depending on the size of the device being modelled.

If a wide range of ON to OFF resistance must be used in the switches (ROFF/RON > 1e+12), then the tolerance on errors allowed during transient analysis should be decreased by using the .OPTIONS control line and specifying TRTOL to be less than the default value of 7.0. When switches are placed around capacitors, then the option CHGTOL should also be reduced. Suggested values for these two options are 1.0 and 1e-16 respectively. These changes inform WinSpice3 to be more careful around the switch points so that no errors are made due to the rapid change in the circuit.

4.2 Voltage And Current Sources

4.2.1 Ixxxx and Vxxxx: Independent Sources

General form:

VXXXXXXX N+ N- <<DC> DC/TRAN VALUE> <AC <ACMAG <ACPHASE>>>

+
<DISTOF1 <F1MAG <F1PHASE>>> <DISTOF2 <F2MAG <F2PHASE>>>

IYYYYYYY N+ N- <<DC> DC/TRAN VALUE> <AC <ACMAG <ACPHASE>>>

+
<DISTOF1 <F1MAG <F1PHASE>>> <DISTOF2 <F2MAG <F2PHASE>>>

Examples:

VCC 10 0 DC 6

VIN 13 2 0.001 AC 1 SIN(0 1 1MEG)

ISRC 23 21 AC 0.333 45.0 SFFM(0 1 10K 5 1K)

VMEAS 12 9

VCARRIER 1 0 DISTOF1 0.1 -90.0

VMODULATOR 2 0 DISTOF2 0.01

IIN1 1 5 AC 1 DISTOF1 DISTOF2 0.001

N+ and N- are the positive and negative nodes, respectively. Note that voltage sources need not be grounded. Positive current is assumed to flow from the positive node, through the source, to the negative node. A current source of positive value forces current to flow out of the N+ node, through the source, and into the N- node. Voltage sources, in addition to being used for circuit excitation, are the 'ammeters' for WinSpice3, that is, zero valued voltage sources may be inserted into the circuit for the purpose of measuring current. They of course have no effect on circuit operation since they represent short-circuits.

DC/TRAN is the DC and transient analysis value of the source. If the source value is zero both for DC and transient analyses, this value may be omitted. If the source value is time-invariant (e.g., a power supply), then the value may optionally be preceded by the letters DC.

ACMAG is the AC magnitude and ACPHASE is the AC phase. The source is set to this value in the AC analysis. If ACMAG is omitted following the keyword AC, a value of unity is assumed. If ACPHASE is omitted, a value of zero is assumed. If the source is not an AC small-signal input, the keyword AC and the AC values are omitted.

DISTOF1 and DISTOF2 are the keywords that specify that the independent source has distortion inputs at the frequencies F1 and F2 respectively (see the description of the .DISTO control line). An optional magnitude and phase may follow the keywords. The default values of the magnitude and phase are 1.0 and 0.0 respectively.

Any independent source can be assigned a time-dependent value for transient. If a source is assigned a time-dependent value, the time-zero value is used for DC analysis. There are five independent source functions: pulse (PULSE), exponential (EXP), sinusoidal (SIN), piece-wise linear (PWL), and single-frequency FM (SFFM). If parameters other than source values are omitted or set to zero, the default values shown are assumed. In the descriptions below, TSTEP is the printing increment and TSTOP is the final time (see the .TRAN control line for explanation – section 5.3.9).

See sections 10.26 and 10.13 for parameters that can be altered using the ‘alter’ command (see 6.9.3).

4.2.1.1 PULSE(): Pulse

General form:

PULSE(V1 V2 TD TR TF PW PER)

Examples:

VIN 3 0 PULSE(-1 1 2NS 2NS 2NS 50NS 100NS)

parameter
default value
units

V1 (initial value)

Volts or Amps

V2 (pulsed value)

Volts or Amps

TD (delay time)
0.0
seconds

TR (rise time)
TSTEP
seconds

TF (fall time)
TSTEP
seconds

PW (pulse width)
TSTOP
seconds

PER(period)
TSTOP
seconds

The following table describes a single pulse so specified:

Time
value

0
V1

TD
V1

TD+TR
V2

TD+TR+PW
V2

TD+TR+PW+TF
V1

TSTOP
V1

Intermediate points are determined by linear interpolation.

4.2.1.2 SIN(): Sinusoidal

General form:

SIN(VO VA FREQ TD THETA)

Examples:

VIN 3 0 SIN(0 1 100MEG 1NS 1E10)

parameters
default value
units

VO (offset)

Volts or Amps

VA (amplitude)

Volts or Amps

FREQ (frequency)
1/TSTOP
Hz

TD (delay)
0.0
seconds

THETA (damping factor)
0.0
1/seconds

The following table describes the shape of the waveform:

time
value

0 to TD

[image: image25.wmf]VO

TD to TSTOP

[image: image26.wmf](

)

(

)

(

)

VO

VAe

FREQ

t

TD

t

TD

THETA

+

+

-

-

sin

2

p

4.2.1.3 EXP(): Exponential

General Form:

EXP(V1 V2 TD1 TAU1 TD2 TAU2)

Examples:

VIN 3 0 EXP(-4 -1 2NS 30NS 60NS 40NS)

parameter
default value
units

V1 (initial value)

Volts or Amps

V2 (pulsed value)

Volts or Amps

TD1 (rise delay time)
0.0
seconds

TAU1 (rise time constant)
TSTEP
seconds

TD2 (fall delay time)
TD1+TSTEP
seconds

TAU2 (fall time constant)
TSTEP
seconds

The following table describes the shape of the waveform:

time
value

0 to TD1

[image: image27.wmf]V

1

TD1 to TD2

[image: image28.wmf](

)

(

)

V

V

V

e

t

TD

TAU

1

2

1

1

1

1

+

-

-

æ

è

ç

ö

ø

÷

-

-

TD2 to TSTOP

[image: image29.wmf](

)

(

)

(

)

(

)

V

V

V

e

V

V

e

t

TD

TAU

t

TD

TAU

1

2

1

1

2

1

1

1

2

2

+

-

-

æ

è

ç

ö

ø

÷

+

-

-

æ

è

ç

ö

ø

÷

-

-

-

-

4.2.1.4 PWL(): Piece-Wise Linear

General Form:

PWL(T1 V1 <T2 V2 T3 V3 T4 V4 ...>)

Examples:

VCLOCK 7 5 PWL(0 -7 10NS -7 11NS -3 17NS -3 18NS -7 50NS -7)

Each pair of values (Ti, Vi) specifies that the value of the source is Vi (in Volts or Amps) at time=Ti. The value of the source at intermediate values of time is determined by using linear interpolation on the input values.

4.2.1.5 SFFM(): Single-Frequency FM

General Form:

SFFM(VO VA FC MDI FS)

Examples:

V1 12 0 SFFM(0 1M 20K 5 1K)

parameter
default value
units

VO (offset)

Volts or Amps

VA (amplitude)

Volts or Amps

FC (carrier frequency)
1/TSTOP
Hz

MDI (modulation index)

FS (signal frequency)
1/TSTOP
Hz

The shape of the waveform is described by the following equation:

[image: image30.wmf](

)

(

)

(

)

FSt

MDI

FCt

V

V

t

V

A

p

p

2

sin

2

sin

0

+

+

=

4.2.2 Linear Dependent Sources

SPICE allows circuits to contain linear dependent sources characterised by any of the four equations

i = g v v = e v i = f i v = h i

where g, e, f, and h are constants representing transconductance, voltage gain, current gain, and transresistance, respectively.

4.2.2.1 Gxxxx: Linear Voltage-Controlled Current Sources

General form:

GXXXXXXX N+ N- NC+ NC- VALUE

Examples:

G1 2 0 5 0 0.1MMHO

N+ and N- are the positive and negative nodes, respectively. Current flow is from the positive node, through the source, to the negative node. NC+ and NC- are the positive and negative controlling nodes, respectively. VALUE is the transconductance (in mhos).

4.2.2.2 Exxxx: Linear Voltage-Controlled Voltage Sources

General form:

EXXXXXXX N+ N- NC+ NC- VALUE

Examples:

E1 2 3 14 1 2.0

N+ is the positive node, and N- is the negative node. NC+ and NC- are the positive and negative controlling nodes, respectively. VALUE is the voltage gain.

4.2.2.3 Fxxxx: Linear Current-Controlled Current Sources

General form:

FXXXXXXX N+ N- VNAM VALUE

Examples:

F1 13 5 VSENS 5

N+ and N- are the positive and negative nodes, respectively. Current flow is from the positive node, through the source, to the negative node. VNAM is the name of a voltage source through which the controlling current flows. The direction of positive controlling current flow is from the positive node, through the source, to the negative node of VNAM. VALUE is the current gain.

4.2.2.4 Hxxxx: Linear Current-Controlled Voltage Sources

General form:

HXXXXXXX N+ N- VNAM VALUE

Examples:

HX 5 17 VZ 0.5K

N+ and N- are the positive and negative nodes, respectively. VNAM is the name of a voltage source through which the controlling current flows. The direction of positive controlling current flow is from the positive node, through the source, to the negative node of VNAM. VALUE is the transresistance (in ohms).

4.2.3 Non-linear Dependent Sources using POLY()

For compatibility with SPICE2, WinSpice allows circuits to contain dependent sources characterised by any of the four equations

 i=f(v) v=f(v) i=f(i) v=f(i)

where the functions must be polynomials, and the arguments may be multidimensional. The polynomial functions are specified by a set of coefficients p0, p1, ..., pn. Both the number of dimensions and the number of coefficients are arbitrary. The meaning of the coefficients depends upon the dimension of the polynomial, as shown in the following examples:

Suppose that the function is one-dimensional (that is, a function of one argument). Then the function value fv is determined by the following expression in fa (the function argument):

fv = p0 + (p1*fa) + (p2*fa**2) + (p3*fa**3) + (p4*fa**4) + (p5*fa**5) + ...

Suppose now that the function is two-dimensional, with arguments fa and fb. Then the function value fv is determined by the following expression:

fv = p0 + (p1*fa) + (p2*fb) + (p3*fa**2) + (p4*fa*fb)
 + (p5*fb**2)
 + (p6*fa**3) + (p7*fa**2*fb) + (p8*fa*fb**2)
 + (p9*fb**3) + ...

Consider now the case of a three-dimensional polynomial function with arguments fa, fb, and fc. Then the function value fv is determined by the following expression:

 fv = p0 + (p1*fa) + (p2*fb) + (p3*fc) + (p4*fa**2)
 + (p5*fa*fb)
 + (p6*fa*fc) + (p7*fb**2) + (p8*fb*fc) + (p9*fc**2)
 + (p10*fa**3)
 + (p11*fa**2*fb) + (p12*fa**2*fc) + (p13*fa*fb**2)
 + (p14*fa*fb*fc)
 + (p15*fa*fc**2) + (p16*fb**3) + (p17*fb**2*fc)
 + (p18*fb*fc**2)
 + (p19*fc**3) + (p20*fa**4) + ...

Note: if the polynomial is one-dimensional and exactly one coefficient is specified, then SPICE assumes it to be p1 (and p0 = 0.0), in order to facilitate the input of linear controlled sources.

For all four of the dependent sources described below, the initial condition parameter is described as optional. If not specified, WinSpice assumes 0 the initial condition for dependent sources is an initial 'guess' for the value of the controlling variable. The program uses this initial condition to obtain the dc operating point of the circuit. After convergence has been obtained, the program continues iterating to obtain the exact value for the controlling variable. Hence, to reduce the computational effort for the dc operating point, or if the polynomial specifies a strong nonlinearity, a value fairly close to the actual controlling variable should be specified for the initial condition.

4.2.3.1 Voltage-Controlled Current Sources

General form:

GXXXXXXX N+ N- <POLY(ND)> NC1+ NC1- ... P0 <P1 ...> <IC=...>

Examples:

G1 1 0 5 3 0 0.1M

GR 17 3 17 3 0 1M 1.5M IC=2V

GMLT 23 17 POLY(2) 3 5 1 2 0 1M 17M 3.5U IC=2.5, 1.3

N+ and N- are the positive and negative nodes, respectively. Current flow is from the positive node, through the source, to the negative node. POLY(ND) only has to be specified if the source is multi-dimensional (one-dimensional is the default). If specified, ND is the number of dimensions, which must be positive. NC1+, NC1-, .are the positive and negative controlling nodes, respectively. One pair of nodes must be specified for each dimension. P0, P1, P2, ..., Pn are the polynomial coefficients. The (optional) initial condition is the initial guess at the value(s) of the controlling voltage(s). If not specified, 0.0 is assumed. The polynomial specifies the source current as a function of the controlling voltage(s). The second example above describes a current source with value

I = 1E-3*V(17,3) + 1.5E-3*V(17,3)**2

note that since the source nodes are the same as the controlling nodes, this source actually models a nonlinear resistor.

4.2.3.2 Voltage-Controlled Voltage Sources

General form:

EXXXXXXX N+ N- <POLY(ND)> NC1+ NC1- ... P0 <P1 ...> <IC=...>

Examples:

E1 3 4 21 17 10.5 2.1 1.75

EX 17 0 POLY(3) 13 0 15 0 17 0 0 1 1 1 IC=1.5,2.0,17.35

N+ and N- are the positive and negative nodes, respectively. POLY(ND) only has to be specified if the source is multi-dimensional (one-dimensional is the default). If specified, ND is the number of dimensions, which must be positive. NC1+, NC1-, ... are the positive and negative controlling nodes, respectively. One pair of nodes must be specified for each dimension.

P0, P1, P2, ..., Pn are the polynomial coefficients. The optional initial condition is the initial guess at the value(s) of the controlling voltage(s). If not specified, 0.0 is assumed.

The polynomial specifies the source voltage as a function of the controlling voltage(s). The second example above describes a voltage source with value

V = V(13,0) + V(15,0) + V(17,0)

(in other words, an ideal voltage summer).

4.2.3.3 Current-Controlled Current Sources

General form:

FXXXXXXX N+ N- <POLY(ND)> VN1 <VN2 ...> P0 <P1 ...> <IC=...>

Examples:

F1 12 10 VCC 1MA 1.3M

FXFER 13 20 VSENS 0 1

N+ and N- are the positive and negative nodes, respectively. Current flow is from the positive node, through the source, to the negative node. POLY(ND) only has to be specified if the source is multi-dimensional (one-dimensional is the default). If specified, ND is the number of dimensions, which must be positive. VN1, VN2, ... are the names of voltage sources through which the controlling current flows; one name must be specified for each dimension. The direction of positive controlling current flow is from the positive node, through the source, to the negative node of each voltage source. P0, P1, P2, ..., Pn are the polynomial coefficients. The (optional) initial condition is the initial guess at the value(s) of the controlling current(s) (in Amps). If not specified, 0.0 is assumed. The polynomial specifies the source current as a function of the controlling current(s). The first example above describes a current source with value

I = 1E-3 + 1.3E-3*I(VCC)

4.2.3.4 Current-Controlled Voltage Sources

General form:

HXXXXXXX N+ N- <POLY(ND)> VN1 <VN2 ...> P0 <P1 ...> <IC=...>

Examples:

HXY 13 20 POLY(2) VIN1 VIN2 0 0 0 0 1 IC=0.5 1.3

HR 4 17 VX 0 0 1

N+ and N- are the positive and negative nodes, respectively. POLY(ND) only has to be specified if the source is multi-dimensional (one-dimensional is the default). If specified, ND is the number of dimensions, which must be positive. VN1, VN2, ... are the names of voltage sources through which the controlling current flows; one name must be specified for each dimension. The direction of positive controlling current flow is from the positive node, through the source, to the negative node of each voltage source. P0, P1, P2, ..., Pn are the polynomial coefficients. The optional initial condition is the initial guess at the value(s) of the controlling current(s) (in Amps). If not specified, 0.0 is assumed. The polynomial specifies the source voltage as a function of the controlling current(s). The first example above describes a voltage source with value

V = I(VIN1)*I(VIN2)

4.2.4 Bxxxx: Non-linear Dependent Sources

General form:

BXXXXXXX N+ N- <I=EXPR> <V=EXPR>

Examples:

B1 0 1 I=cos(v(1))+sin(v(2))

B1 0 1 V=ln(cos(log(v(1,2)^2)))-v(3)^4+v(2)^v(1)

B1 3 4 I=17

B1 3 4 V=exp(pi^i(vdd))

N+ is the positive node, and N- is the negative node. The values of the V and I parameters determine the voltages and currents across and through the device, respectively. If I is given then the device is a current source, and if V is given the device is a voltage source. One and only one of these parameters must be given.

The small-signal AC behaviour of the non-linear source is a linear dependent source (or sources) with a proportionality constant equal to the derivative (or derivatives) of the source at the DC operating point.

The expressions given for V and I may be any function of voltages and currents through voltage sources in the system. In an AC analysis, only the DC component of a voltage or current source when the initial operating point was calculated is used.

The following functions of real variables are defined:

abs
asinh
cosh
sin

acos
atan
exp
sinh

acosh
atanh
ln
sqrt

asin
cos
log
tan

The function "u" is the unit step function, with a value of one for arguments greater than one and a value of zero for arguments less than zero.

The function "uramp" is the integral of the unit step: for an input x, the value is zero if x is less than zero, or if x is greater than zero the value is x.

These two functions are useful in synthesising piece-wise non-linear functions, though convergence may be adversely affected.

The following standard operators are defined:

+ - * / ^ unary -

If the argument of log, ln, or sqrt becomes less than zero, the absolute value of the argument is used. If a divisor becomes zero or the argument of log or ln becomes zero, an error will result. Other problems may occur when the argument for a function in a partial derivative enters a region where that function is undefined.

To get time into the expression you can integrate the current from a constant current source with a capacitor and use the resulting voltage (don't forget to set the initial voltage across the capacitor). Non-linear resistors, capacitors, and inductors may be synthesised with the non-linear dependent source. Non-linear resistors are obvious. Non-linear capacitors and inductors are implemented with their linear counterparts by a change of variables implemented with the non-linear dependent source. The following subcircuit will implement a non-linear capacitor:

.Subckt nlcap pos neg

* Bx: calculate f(input voltage)

Bx 1 0 v = f(v(pos,neg))

* Cx: linear capacitance

Cx 2 0 1

* Vx: Ammeter to measure current into the capacitor

Vx 2 1 DC 0Volts

* Drive the current through Cx back into the circuit

Fx pos neg Vx 1

.ends

Non-linear inductors are similar.

4.3 Transmission Lines

4.3.1 Txxxx: Lossless Transmission Lines

General form:

TXXXXXXX N1 N2 N3 N4 Z0=VALUE <TD=VALUE> <F=FREQ <NL=NRMLEN>>

+ <IC=V1, I1, V2, I2>

 Examples:

T1 1 0 2 0 Z0=50 TD=10NS

N1 and N2 are the nodes at port 1; N3 and N4 are the nodes at port 2. Z0 is the characteristic impedance. The length of the line may be expressed in either of two forms. The transmission delay, TD, may be specified directly (as TD=10ns, for example). Alternatively, a frequency F may be given, together with NL, the normalised electrical length of the transmission line with respect to the wavelength in the line at the frequency F. If a frequency is specified but NL is omitted, 0.25 is assumed (that is, the frequency is assumed to be the quarter-wave frequency). Note that although both forms for expressing the line length are indicated as optional, one of the two must be specified.

Note that this element models only one propagating mode. If all four nodes are distinct in the actual circuit, then two modes may be excited. To simulate such a situation, two transmission-line elements are required (see the example in Appendix A for further clarification).

The (optional) initial condition specification consists of the voltage and current at each of the transmission line ports. Note that the initial conditions (if any) apply 'only' if the UIC option is specified on the .TRAN control line.

Note that a lossy transmission line (see below) with zero loss may be more accurate than the lossless transmission line due to implementation details.

4.3.2 Oxxxx: Lossy Transmission Lines

General form:

OXXXXXXX N1 N2 N3 N4 MNAME

Examples:

O23 1 0 2 0 LOSSYMOD

OCONNECT 10 5 20 5 INTERCONNECT

This is a two-port convolution model for single-conductor lossy transmission lines. N1 and N2 are the nodes at port 1; N3 and N4 are the nodes at port 2. Note that a lossy transmission line with zero loss may be more accurate than the lossless transmission line due to implementation details.

4.3.2.1 Lossy Transmission Line Model (LTRA)

The uniform RLC/RC/LC/RG transmission line model (referred to as the LTRA model henceforth) models a uniform constant-parameter distributed transmission line. The RC and LC cases may also be modelled using the URC and TRA models; however, the newer LTRA model is usually faster and more accurate than the others are. The operation of the LTRA model is based on the convolution of the transmission line's impulse responses with its inputs (see [8]).

The LTRA model takes a number of parameters, some of which must be given and others that are optional.

name
parameter
units/type
default
example

R
resistance/length
Z/unit
0.0
0.2

L
inductance/length
henrys/unit
0.0
9.13e-9

G
conductance/length
mhos/unit
0.0
0.0

C
capacitance/length
farads/unit
0.0
3.65e-12

LEN
length of line

no default
1.0

REL
breakpoint control
arbitrary unit
1
0.5

ABS
breakpoint control

1
5

NOSTEPLIMIT
don't limit timestep to less than line delay
flag
not set
set

NOCONTROL
don't do complex timestep control
flag
not set
set

LININTERP
use linear interpolation
flag
not set
set

MIXEDINTERP
use linear when quadratic seems bad

not set
set

COMPACTREL
special reltol for history compaction
flag
RELTOL
1.0e-3

COMPACTABS
special abstol for history compaction

ABSTOL
1.0e-9

TRUNCNR
use Newton-Raphson method for timestep control
flag
not set
set

TRUNCDONTCUT
don't limit timestep to keep impulse-response errors low
flag
not set
set

The following types of lines have been implemented so far: RLC (uniform transmission line with series loss only), RC (uniform RC line), LC (lossless transmission line), and RG (distributed series resistance and parallel conductance only). Any other combination will yield erroneous results and should not be tried. The length LEN of the line must be specified.

NOSTEPLIMIT is a flag that will remove the default restriction of limiting time-steps to less than the line delay in the RLC case. NOCONTROL is a flag that prevents the default limiting of the time-step based on convolution error criteria in the RLC and RC cases. This speeds up simulation but may in some cases reduce the accuracy of results.

LININTERP is a flag that, when specified, will use linear interpolation instead of the default quadratic interpolation for calculating delayed signals.

MIXEDINTERP is a flag that, when specified, uses a metric for judging whether quadratic interpolation is not applicable and if so uses linear interpolation; otherwise it uses the default quadratic interpolation.

TRUNCDONTCUT is a flag that removes the default cutting of the time-step to limit errors in the actual calculation of impulse-response related quantities.

COMPACTREL and COMPACTABS are quantities that control the compaction of the past history of values stored for convolution. Larger values of these lower accuracy but usually increase simulation speed. These are to be used with the TRYTOCOMPACT option, described in the .OPTIONS section.

TRUNCNR is a flag that turns on the use of Newton-Raphson iterations to determine an appropriate timestep in the timestep control routines. The default is a trial and error procedure by cutting the previous timestep in half.

REL and ABS are quantities that control the setting of breakpoints.

The option most worth experimenting with for increasing the speed of simulation is REL. The default value of 1 is usually safe from the point of view of accuracy but occasionally increases computation time. A value greater than 2 eliminates all breakpoints and may be worth trying depending on the nature of the rest of the circuit, keeping in mind that it might not be safe from the viewpoint of accuracy. Breakpoints may usually be entirely eliminated if it is expected the circuit will not display sharp discontinuities. Values between 0 and 1 are usually not required but may be used for setting many breakpoints.

COMPACTREL may also be experimented with when the option TRYTOCOMPACT is specified in a .OPTIONS card. The legal range is between 0 and 1. Larger values usually decrease the accuracy of the simulation but in some cases improve speed. If TRYTOCOMPACT is not specified on a .OPTIONS card, history compaction is not attempted and accuracy is high. NOCONTROL, TRUNCDONTCUT and NOSTEPLIMIT also tend to increase speed at the expense of accuracy.

4.3.3 Uxxxx: Uniform Distributed RC Lines (Lossy)

General form:

UXXXXXXX N1 N2 N3 MNAME L=LEN <N=LUMPS>

Examples:

U1 1 2 0 URCMOD L=50U

URC2 1 12 2 UMODL l=1MIL N=6

N1 and N2 are the two element nodes the RC line connects, while N3 is the node to which the capacitances are connected. MNAME is the model name, LEN is the length of the RC line in meters. LUMPS, if specified, is the number of lumped segments to use in modelling the RC line (see the model description for the action taken if this parameter is omitted).

4.3.3.1 Uniform Distributed RC Model (URC)

The URC model is derived from a model proposed by L. Gertzberrg in 1974. The model is accomplished by a subcircuit type expansion of the URC line into a network of lumped RC segments with internally generated nodes. The RC segments are in a geometric progression, increasing toward the middle of the URC line, with K as proportionality constant. The number of lumped segments used, if not specified for the URC line device, is determined by the following formula:

[image: image31.wmf](

)

K

K

K

L

L

C

L

R

F

N

log

1

2

log

2

2

max

ú

ú

û

ù

ê

ê

ë

é

÷

ø

ö

ç

è

æ

-

=

p

The URC line is made up strictly of resistor and capacitor segments unless the ISPERL parameter is given a non-zero value. In this case the capacitors are replaced with reverse biased diodes. These have a zero-bias junction capacitance equivalent to the capacitance replaced, and with a saturation current of ISPERL amps per meter of transmission line, and an optional series resistance equivalent to RSPERL ohms per meter.

name
parameter
units
default
example
area

K
Propagation Constant
-
2.0
1.2
-

FMAX
Maximum Frequency of interest
Hz
1.0G
6.5Meg
-

RPERL
Resistance per unit length
/m
1000
10
-

CPERL
Capacitance per unit length
F/m
1.0e-15
1pF
-

ISPERL
Saturation Current per unit length
A/m
0
-
-

RSPERL
Diode Resistance per unit length
/m
0
-
-

4.4 Transistors And Diodes

WinSpice3 has built-in models for the semiconductor devices, and the user need specify only the pertinent model parameter values.

The model for the BJT is based on the integral-charge model of Gummel and Poon; however, if the Gummel-Poon parameters are not specified, the model reduces to the simpler Ebers-Moll model. In either case, charge-storage effects, ohmic resistances, and a current-dependent output conductance may be included.

The diode model can be used for either junction diodes or Schottky barrier diodes. The JFET model is based on the FET model of Shichman and Hodges.

Six MOSFET models are implemented: MOS1 is described by a square-law I-V characteristic, MOS2 [1] is an analytical model, while MOS3 [1] is a semi-empirical model; MOS6 [2] is a simple analytic model accurate in the short-channel region; MOS4 [3, 4] and MOS5 [5] are the BSIM (Berkeley Short-channel IGFET Model) and BSIM2. MOS2, MOS3, and MOS4 include second-order effects such as channel-length modulation, sub threshold conduction, scattering-limited velocity saturation, small-size effects, and charge-controlled capacitances.

The area factor used on the diode, BJT, JFET, and MESFET devices determines the number of equivalent parallel devices of a specified model. The affected parameters are marked with an asterisk under the heading 'area' in the model descriptions below. Several geometric factors associated with the channel and the drain and source diffusions can be specified on the MOSFET device line.

Two different forms of initial conditions may be specified for some devices. The first form is included to improve the DC convergence for circuits that contain more than one stable state. If a device is specified OFF, the DC operating point is determined with the terminal voltages for that device set to zero. After convergence is obtained, the program continues to iterate to obtain the exact value for the terminal voltages. If a circuit has more than one DC stable state, the OFF option can be used to force the solution to correspond to a desired state. If a device is specified OFF when in reality the device is conducting, the program still obtains the correct solution (assuming the solutions converge) but more iterations are required since the program must independently converge to two separate solutions. The .NODESET control line serves a similar purpose as the OFF option. The .NODESET option is easier to apply and is the preferred means to aid convergence.

The second form of initial conditions is specified for use with the transient analysis. These are true 'initial conditions' as opposed to the convergence aids above. See the description of the .IC control line and the .TRAN control line for a detailed explanation of initial conditions.

4.4.1 Dxxxx: Junction Diodes

General form:

DXXXXXXX N+ N- MNAME <AREA> <OFF> <IC=VD> <TEMP=T>

Examples:

DBRIDGE 2 10 DIODE1

DCLMP 3 7 DMOD 3.0 IC=0.2

N+ and N- are the positive and negative nodes, respectively.

MNAME is the model name, AREA is the area factor, and OFF indicates an (optional) starting condition on the device for DC analysis. If the area factor is omitted, a value of 1.0 is assumed.

The (optional) initial condition specification using IC=VD is intended for use with the UIC option on the .TRAN control line, when a transient analysis is desired starting from other than the quiescent operating point.

The (optional) TEMP value is the temperature at which this device is to operate, and overrides the temperature specification on the .OPTION control line.

4.4.1.1 Diode Model (D)

The DC characteristics of the diode are determined by the parameters IS and N. An ohmic resistance, RS, is included.

Charge storage effects are modelled by a transit time, TT, and a non-linear depletion layer capacitance which is determined by the parameters CJO, VJ, and M.

The temperature dependence of the saturation current is defined by the parameters EG, the energy and XTI, the saturation current temperature exponent. The nominal temperature at which these parameters were measured is TNOM, which defaults to the circuit-wide value specified on the .OPTIONS control line.

Reverse breakdown is modelled by an exponential increase in the reverse diode current and is determined by the parameters BV and IBV (both of which are positive numbers).

name
parameter
units
default
example
area

IS
saturation current
A
1.0e-14
1.0e-14
*

RS
ohmic resistance

0
10
*

N
emission coefficient
-
1
1.0

TT
transit-time
sec
0
0.1ns

CJO
zero-bias junction capacitance
F
0
2pF
*

VJ
junction potential
V
1
0.6

M
grading coefficient
-
0.5
0.5

EG
activation energy
eV
1.11
1.11 Si
0.69 Sbd
0.67 Ge

XTI
saturation-current temp. exp
-
3.0
3.0 jn
2.0 Sbd

KF
flicker noise coefficient
-
0

AF
flicker noise exponent
-
1

FC
coefficient for forward-bias depletion capacitance formula
-
0.5

BV
reverse breakdown voltage
V
infinite
40.0

IBV
current at breakdown voltage
A
1.0e-3

TNOM
parameter measurement temperature
C
27
50

4.4.2 Qxxxx: Bipolar Junction Transistors (BJTs)

General form:

QXXXXXXX NC NB NE <NS> MNAME <AREA> <OFF> <IC=VBE, VCE> <TEMP=T>

Examples:

Q23 10 24 13 QMOD IC=0.6, 5.0

Q50A 11 26 4 20 MOD1

NC, NB, and NE are the collector, base, and emitter nodes, respectively. NS is the (optional) substrate node. If unspecified, ground is used.

MNAME is the model name, AREA is the area factor, and OFF indicates an (optional) initial condition on the device for the DC analysis. If the area factor is omitted, a value of 1.0 is assumed. The (optional) initial condition specification using IC=VBE, VCE is intended for use with the UIC option on the .TRAN control line, when a transient analysis is desired starting from other than the quiescent operating point. See the .IC control line description for a better way to set transient initial conditions.

The (optional) TEMP value is the temperature at which this device is to operate, and overrides the temperature specification on the .OPTION control line.

4.4.2.1 BJT Models (NPN/PNP)

The bipolar junction transistor model in WinSpice3 is an adaptation of the integral charge control model of Gummel and Poon. This modified Gummel-Poon model extends the original model to include several effects at high bias levels. The model automatically simplifies to the simpler Ebers-Moll model when certain parameters are not specified. The parameter names used in the modified Gummel-Poon model have been chosen to be more easily understood by the program user, and to reflect better both physical and circuit design thinking.

The DC model is defined by the parameters IS, BF, NF, ISE, IKF, and NE which determine the forward current gain characteristics, IS, BR, NR, ISC, IKR, and NC which determine the reverse current gain characteristics, and VAF and VAR which determine the output conductance for forward and reverse regions.

Three ohmic resistances RB, RC, and RE are included, where RB can be highly current dependent. Base charge storage is modelled by forward and reverse transit times, TF and TR, the forward transit time TF being bias dependent if desired.

CJE, VJE, and MJE determine non-linear depletion layer capacitances for the B-E junction, CJC, VJC, and MJC for the B-C junction and CJS, VJS, and MJS for the C-S (Collector-Substrate) junction.

The temperature dependence of the saturation current, IS, is determined by the energy-gap, EG, and the saturation current temperature exponent, XTI. Additionally, the beta temperature exponent XTB in the new model models base current temperature dependence. It is assumed that the values specified were measured at the temperature TNOM, which can be specified on the .OPTIONS control line or overridden by a specification on the .MODEL line.

The BJT parameters used in the modified Gummel-Poon model are listed below. The parameter names used in earlier versions of SPICE2 are still accepted.

Modified Gummel-Poon BJT Parameters.

name
parameter
units
default
example
area

IS
transport saturation current
A
1.0e-16
1.0e-15
*

BF
ideal maximum forward beta
-
100
100

NF
forward current emission coefficient
-
1.0
1

VAF
forward Early voltage
V
infinite
200

IKF
corner for forward beta high current roll-off
A
infinite
0.01
*

ISE
B-E leakage saturation current
A
0
1.0e-13
*

NE
B-E leakage emission coefficient
-
1.5
2

BR
ideal maximum reverse beta
-
1
0.1

NR
reverse current emission coefficient
-
1
1

VAR
reverse Early voltage
V
infinite
200

IKR
corner for reverse beta high current roll-off
A
infinite
0.01
*

ISC
B-C leakage saturation current
A
0
1.0e-13
*

NC
B-C leakage emission coefficient
-
2
1.5

RB
zero bias base resistance

0
100
*

IRB
current where base resistance falls halfway to its min value
A
infinite
0.1
*

RBM
minimum base resistance at high currents

RB
10
*

RE
emitter resistance

0
1
*

RC
collector resistance

0
10
*

CJE
B-E zero-bias depletion capacitance
F
0
2pF
*

VJE
B-E built-in potential
V
0.75
0.6

MJE
B-E junction exponential factor
-
0.33
0.33

TF
ideal forward transit time
sec
0
0.1ns

XTF
coefficient for bias dependence of TF
-
0

VTF
voltage describing VBC dependence of TF
V
infinite

ITF
high-current parameter for effect on TF
A
0

*

PTF
excess phase at freq=1.0/(TF*2PI) Hz
deg
0

CJC
B-C zero-bias depletion capacitance
F
0
2pF
*

VJC
B-C built-in potential
V
0.75
0.5

MJC
B-C junction exponential factor
-
0.33
0.5

XCJC
fraction of B-C depletion capacitance connected to internal base node
-
1

TR
ideal reverse transit time
sec
0
10ns

CJS
zero-bias collector-substrate capacitance
F
0
2pF
*

VJS
substrate junction built-in potential
V
0.75

MJS
substrate junction exponential factor
-
0
0.5

XTB
forward and reverse beta temperature exponent
-
0

EG
energy gap for temperature effect on IS
eV
1.11

XTI
temperature exponent for effect on IS
-
3

KF
flicker-noise coefficient
-
0

AF
flicker-noise exponent
-
1

FC
coefficient for forward-bias depletion capacitance formula
-
0.5

TNOM
Parameter measurement temperature
C
27
50

4.4.3 Jxxxx: Junction Field-Effect Transistors (JFETs)

General form:

JXXXXXXX ND NG NS MNAME <AREA> <OFF> <IC=VDS, VGS> <TEMP=T>

Examples:

J1 7 2 3 JM1 OFF

ND, NG, and NS are the drain, gate, and source nodes, respectively.

MNAME is the model name, AREA is the area factor, and OFF indicates an (optional) initial condition on the device for DC analysis. If the area factor is omitted, a value of 1.0 is assumed.

The (optional) initial condition specification, using IC=VDS, VGS is intended for use with the UIC option on the .TRAN control line, when a transient analysis is desired starting from other than the quiescent operating point. See the .IC control line for a better way to set initial conditions.

The (optional) TEMP value is the temperature at which this device is to operate, and overrides the temperature specification on the .OPTION control line.

4.4.3.1 JFET Models (NJF/PJF)

WinSpice provides two JFET models:-

LEVEL=1 ->
Shichman-Hodges

LEVEL=2 ->
Parker-Skellern FET model (see [9])

The Level 1 JFET model is derived from the FET model of Shichman and Hodges.

The Level 2 model is an alternative model by Anthony Parker at Macquarie University.

In both models, the DC characteristics are defined by the parameters VTO and BETA, which determine the variation of drain current with gate voltage, LAMBDA, which determines the output conductance, and IS, the saturation current of the two gate junctions. Two ohmic resistances, RD and RS, are included. Charge storage is modelled by non-linear depletion layer capacitances for both gate junctions which vary as the -1/2 power of junction voltage and are defined by the parameters CGS, CGD, and PB.

name
parameter
units
default
example
area

VTO
threshold voltage (VTO)
V
-2.0
-2.0

BETA
transconductance parameter (B)
A/V2
1.0e-4
1.0e-3
*

LAMBDA
channel-length modulation parameter ()
1/V
0
1.0e-4

RD
drain ohmic resistance

0
100
*

RS
source ohmic resistance

0
100
*

CGS
zero-bias G-S junction capacitance (Cgs)
F
0
5pF
*

CGD
zero-bias G-D junction capacitance (Cgd)
F
0
1pF
*

PB
gate junction potential
V
1
0.6

IS
gate junction saturation current (IS)
A
1.0e-14
1.0e-14
*

B
doping tail parameter
-
1
1.1

KF
flicker noise coefficient
-
0

AF
flicker noise exponent
-
1

FC
coefficient for forward-bias depletion capacitance formula
-
0.5

TNOM
parameter measurement temperature
C
27
50

4.4.4 Mxxxx: MOSFETs

General form:

MXXXXXXX ND NG NS NB MNAME <L=VAL> <W=VAL> <AD=VAL> <AS=VAL>

+ <PD=VAL> <PS=VAL> <NRD=VAL> <NRS=VAL> <OFF>

+ <IC=VDS, VGS, VBS> <TEMP=T>

Examples:

M1 24 2 0 20 TYPE1

M31 2 17 6 10 MODM L=5U W=2U

M1 2 9 3 0 MOD1 L=10U W=5U AD=100P AS=100P PD=40U PS=40U

ND, NG, NS, and NB are the drain, gate, source, and bulk (substrate) nodes, respectively.

MNAME is the model name.

L and W are the channel length and width, in meters. AD and AS are the areas of the drain and source diffusions, in meters2 . Note that the suffix U specifies microns (1e-6 m) and P sq.-microns (1e-12 m2).

If any of L, W, AD, or AS are not specified, the default values defined by the .OPTION control line variables DEFL, DEFW, DEFAD and DEFAS are used (see section 5.1). The use of defaults simplifies input file preparation, as well as the editing required if device geometry's are to be changed.

PD and PS are the perimeters of the drain and source junctions, in meters and default to 0.0

NRD and NRS designate the equivalent number of squares of the drain and source diffusions; these values multiply the sheet resistance RSH specified on the .MODEL control line for an accurate representation of the parasitic series drain and source resistance of each transistor. NRD and NRS default to 1.0.

OFF indicates an (optional) initial condition on the device for DC analysis. The (optional) initial condition specification using IC=VDS, VGS, VBS is intended for use with the UIC option on the .TRAN control line, when a transient analysis is desired starting from other than the quiescent operating point. See the .IC control line for a better and more convenient way to specify transient initial conditions.

The (optional) TEMP value is the temperature at which this device is to operate, and overrides the temperature specification on the .OPTION control line. The temperature specification is ONLY valid for level 1, 2, 3, and 6 MOSFETs, not for level 4 or 5 (BSIM) devices.

4.4.4.1 MOSFET Models (NMOS/PMOS)

SPICE provides four MOSFET device models, which differ in the formulation of the I-V characteristic. The variable LEVEL specifies the model to be used:-

LEVEL=1
Shichman-Hodges

LEVEL=2
MOS2 (as described in [1])

LEVEL=3
MOS3, a semi-empirical model(see [1])

LEVEL=4
BSIM1 (as described in [3])

LEVEL=5
BSIM2 (as described in [5])

LEVEL=6
MOS6 (as described in [6])

LEVEL=8
BSIM3

LEVEL=9
B3SOI

LEVEL=14
BSIM4

LEVEL=44
EKV from Ecole Polytechnique Federale de Lausanne (see http://legwww.epfl.ch/ekv)

LEVEL=49
BSIM3 (same as LEVEL=8 for HSPICE compatibility)

Note that three versions of the BSIM3 model are supported by WinSpice. This is needed because different versions of BSIM3 are not compatible with each other in term of the model parameters. The version is selected by placing a ‘VERSION=x.x.x’ option in the .MODEL line as follows:-

VERSION=3.1
BSIM3 v3.1

VERSION=3.2
BSIM3 v3.2

Omitted
BSIM3 v3.2.2

The DC characteristics of the level 1 through level 3 MOSFETs are defined by the device parameters VTO, KP, LAMBDA, PHI and GAMMA. These parameters are computed by WinSpice3 if process parameters (NSUB, TOX, .) are given, but user-specified values always override. VTO is positive (negative) for enhancement mode and negative (positive) for depletion mode N-channel (P-channel) devices.

Charge storage is modelled by three constant capacitors, CGSO, CGDO, and CGBO which represent overlap capacitances, by the non-linear thin-oxide capacitance which is distributed among the gate, source, drain, and bulk regions, and by the non-linear depletion-layer capacitances for both substrate junctions divided into bottom and periphery. These vary as the MJ and MJSW power of junction voltage respectively, and are determined by the parameters CBD, CBS, CJ, CJSW, MJ, MJSW and PB. Charge the piecewise linear voltages-dependent capacitance model proposed by Meyer models storage effects. The thin-oxide charge-storage effects are treated slightly different for the LEVEL=1 model. These voltage-dependent capacitances are included only if TOX is specified in the input description and they are represented using Meyer's formulation.

There is some overlap among the parameters describing the junctions, e.g. the reverse current can be input either as IS (in A) or as JS (in A/m2). Whereas the first is an absolute value the second is multiplied by AD and AS to give the reverse current of the drain and source junctions respectively. This methodology has been chosen since there is no sense in relating always junction characteristics with AD and AS entered on the device line; the areas can be defaulted. The same idea applies also to the zero-bias junction capacitances CBD and CBS (in F) on one hand, and CJ (in F/m2) on the other.

The parasitic drain and source series resistance can be expressed as either RD and RS (in ohms) or RSH (in ohms/sq.), the latter being multiplied by the number of squares NRD and NRS input on the device line.

A discontinuity in the MOS level 3 model with respect to the KAPPA parameter has been detected (see [10]). The supplied fix has been implemented in WinSpice3. Since this fix may affect parameter fitting, the option "BADMOS3" may be set to use the old implementation (see the section on simulation variables and the ".OPTIONS" line).

SPICE level 1, 2, 3 and 6 parameters:

Name
parameter
units
default
example

LEVEL
model index
-
1

VTO
zero-bias threshold voltage (VTO)
V
0.0
1.0

KP
transconductance parameter
A/V2
2.0e-5
3.1e-5

GAMMA
bulk threshold parameter ()
V1/2
0.0
0.37

PHI
surface potential ()
V
0.6
0.65

LAMBDA
channel-length modulation (MOS1 and MOS2 only) ()
1/V
0.0
0.02

RD
drain ohmic resistance

0.0
1.0

RS
source ohmic resistance

0.0
1.0

CBD
zero-bias B-D junction capacitance
F
0.0
20fF

CBS
zero-bias B-S junction capacitance
F
0.0
20fF

IS
bulk junction saturation current (IS)
A
1.0e-14
1.0e-15

PB
bulk junction potential
V
0.8
0.87

CGSO
gate-source overlap capacitance per meter channel width
F/m
0.0
4.0e-11

CGDO
gate-drain overlap capacitance per meter channel width
F/m
0.0
4.0e-11

CGBO
gate-bulk overlap capacitance per meter channel length
F/m
0.0
2.0e-10

RSH
drain and source diffusion sheet resistance
/[]
0.0
10.0

CJ
zero-bias bulk junction bottom cap per sq.-meter of junction area
F/m2
0.0
2.0e-4

MJ
bulk junction bottom grading coefficient.
-
0.5
0.5

CJSW
zero-bias bulk junction sidewall cap. per meter of junction perimeter
F/m
0.0
1.0e-9

MJSW
bulk junction sidewall grading coefficient.
-
0.50 (level1)
0.33 (level2, 3)

JS
bulk junction saturation current per sq.-meter of junction area
A/m2

1.0e-8

TOX
Oxide thickness
meter
1.0e-7
1.0e-7

NSUB
Substrate doping
1/cm3
0.0
4.0e15

NSS
Surface state density
1/cm2
0.0
1.0e10

NFS
fast surface state density
1/cm2
0.0
1.0e10

TPG
type of gate material:

+1
opp. to substrate

-1
same as substrate

0
Al gate
-
1.0

XJ
Metallurgical junction depth
meter
0.0
1

LD
lateral diffusion
meter
0.0
0.8

UO
surface mobility
cm2/Vs
600
700

UCRIT

critical field for mobility degradation (MOS2 only)
V/cm
1.0e4
1.0e4

UEXP
critical field exponent in mobility degradation (MOS2 only)
-
0.0
0.1

UTRA
Transverse field coefficient (mobility) (deleted for MOS2)
-
0.0
0.3

VMAX
Maximum drift velocity of carriers
m/s
0.0
5.0e4

NEFF
total channel-charge (fixed and mobile) coefficient (MOS2 only)
-
1.0
5.0

KF
flicker noise coefficient
-
0.0
1.0e-26

AF
flicker noise exponent
-
1.0
1.2

FC
Coefficient for forward-bias depletion capacitance formula
-
0.5

DELTA
width effect on threshold voltage (MOS2 and MOS3)
-
0.0
1.0

THETA
mobility modulation (MOS3 only)
1/V
0.0
0.1

ETA
static feedback (MOS3 only)
-
0.0
1.0

KAPPA
Saturation field factor (MOS3 only)
-
0.2
0.5

TNOM
Parameter measurement temperature
C
27
50

The level 4 and level 5 (BSIM1 and BSIM2) parameters are all values obtained from process characterisation, and can be generated automatically. J. Pierret [4] describes a means of generating a 'process' file, and the program Proc2Mod provided with WinSpice3 converts this file into a sequence of BSIM1 ".MODEL" lines suitable for inclusion in a WinSpice3 input file. Parameters marked below with an * in the l/w column also have corresponding parameters with a length and width dependency. For example, VFB is the basic parameter with units of Volts, and LVFB and WVFB also exist and have units of Volt-micrometer. The formula

[image: image32.wmf]effective

W

effective

L

W

P

L

P

P

P

+

+

=

0

is used to evaluate the parameter for the actual device specified with

[image: image33.wmf]DL

L

L

input

effective

-

=

and

[image: image34.wmf]DW

W

W

input

effective

-

=

Note that unlike the other models in WinSpice3, the BSIM model is designed for use with a process characterisation system that provides all the parameters, thus there are no defaults for the parameters, and leaving one out is considered an error. For an example set of parameters and the format of a process file, see the SPICE2 implementation notes [3].

For more information on BSIM2, see reference [5].

SPICE BSIM (level 4) parameters.

name
parameter
units
l/w

VFB
flat-band voltage
V
*

PHI
surface inversion potential
V
*

K1
body effect coefficient
V1/2
*

K2
drain/source depletion charge-sharing coefficient
-
*

ETA
zero-bias drain-induced barrier-lowering coefficient
-
*

MUZ
zero-bias mobility
cm2/V-s

DL
shortening of channel
µm

DW
narrowing of channel
µm

U0
zero-bias transverse-field mobility degradation coefficient
V-1
*

U1
zero-bias velocity saturation coefficient
µm/V
*

X2MZ
sens. of mobility to substrate bias at Vds=0
cm2/V2-s
*

X2E
sens. of drain-induced barrier lowering effect to substrate bias
V-1
*

X3E
sens. of drain-induced barrier lowering effect to drain bias at Vds=Vdd
V-1
*

X2U0
sens. of transverse field mobility degradation effect to substrate bias
V-2
*

X2U1
sens. of velocity saturation effect to substrate bias
µmV-2
*

MUS
mobility at zero substrate bias and at Vds=Vdd
cm2/V2-s

X2MS
sens. of mobility to substrate bias at Vds=Vdd
cm2/V2-s
*

X3MS
sens. of mobility to drain bias at Vds=Vdd
cm2/V2-s
*

X3U1
sens. of velocity saturation effect on drain bias at Vds=Vdd
µmV
*

TOX
gate oxide thickness
µm

TEMP
temperature at which parameters were measured
°C

VDD
measurement bias range
V

CGDO
gate-drain overlap capacitance per meter channel width
F/m

CGSO
gate-source overlap capacitance per meter channel width
F/m

CGBO
gate-bulk overlap capacitance per meter channel length
F/m

XPART
gate-oxide capacitance-charge model flag
-

N0
zero-bias sub threshold slope coefficient
-
*

NB
sens. of sub threshold slope to substrate bias
-
*

ND
sens. of sub threshold slope to drain bias
-
*

RSH
drain and source diffusion sheet resistance
/[]

JS
source drain junction current density
A/m2

PB
built in potential of source drain junction
V

MJ
Grading coefficient of source drain junction
-

PBSW
built in potential of source, drain junction sidewall
V

MJSW
grading coefficient of source drain junction sidewall
-

CJ
Source drain junction capacitance per unit area
F/m2

CJSW
source drain junction sidewall capacitance per unit length
F/m

WDF
source drain junction default width
m

DELL
Source drain junction length reduction
m

XPART = 0 selects a 40/60 drain/source charge partition in saturation, while XPART=1 selects a 0/100 drain/source charge partition.

ND, NG, and NS are the drain, gate, and source nodes, respectively.

MNAME is the model name, AREA is the area factor, and OFF indicates an (optional) initial condition on the device for DC analysis. If the area factor is omitted, a value of 1.0 is assumed.

The (optional) initial condition specification, using IC=VDS, VGS is intended for use with the UIC option on the .TRAN control line, when a transient analysis is desired starting from other than the quiescent operating point. See the .IC control line for a better way to set initial conditions.

4.4.5 Zxxxx: MESFETs

General form:

ZXXXXXXX ND NG NS MNAME <AREA> <OFF> <IC=VDS, VGS>

Examples:

Z1 7 2 3 ZM1 OFF

4.4.5.1 MESFET Models (NMF/PMF)

The MESFET model is derived from the GaAs FET model of Statz et al. as described in [11]. The DC characteristics are defined by the parameters VTO, B, and BETA, which determine the variation of drain current with gate voltage, ALPHA, which determines saturation voltage, and LAMBDA, which determines the output conductance. The formula are given by:

[image: image35.wmf](

)

(

)

(

)

ds

ds

T

gs

T

gs

d

V

V

V

V

b

V

V

I

l

a

b

+

ú

ú

û

ù

ê

ê

ë

é

ú

û

ù

ê

ë

é

-

-

-

+

-

=

1

3

1

1

1

3

2

for
[image: image36.wmf]0

3

<

<

V

ds

a

[image: image37.wmf](

)

(

)

(

)

I

V

V

b

V

V

V

d

gs

T

gs

T

ds

=

-

+

-

+

b

l

2

1

1

for
[image: image38.wmf]V

ds

>

3

a

Two ohmic resistances, RD and RS, are included. Charge storage is modelled by total gate charge as a function of gate-drain and gate-source voltages and is defined by the parameters CGS, CGD, and PB.

name
Parameter
units
default
example
area

VTO
pinch-off voltage
V
-2.0
-2.0

BETA
transconductance parameter
A/V2
1.0e-4
1.0e-3
*

B
doping tail extending parameter
1/V
0.3
0.3
*

ALPHA
saturation voltage parameter
1/V
2
2
*

LAMBDA
channel-length modulation parameter
1/V
0
1.0e-4

RD
drain ohmic resistance

0
100
*

RS
source ohmic resistance

0
100
*

CGS
zero-bias G-S junction capacitance
F
0
5pF
*

CGD
zero-bias G-D junction capacitance
F
0
1pF
*

PB
gate junction potential
V
1
0.6

KF
flicker noise coefficient
-
0

AF
flicker noise exponent
-
1

FC
coefficient for forward-bias depletion capacitance formula
-
0.5

5 ANALYSES AND OUTPUT CONTROL

The following command lines are for specifying analyses or plots within the circuit description file. Parallel commands exist in the interactive command interpreter (detailed in the following section). Specifying analyses and plots (or tables) in the input file is useful for batch runs. Batch mode is entered when either the -b option is given or when the default input source is redirected from a file. In batch mode, the analyses specified by the control lines in the input file (e.g. ".ac", ".tran", etc.) are immediately executed (unless “.control” lines exist; see the section on the interactive command interpreter).

Output plots (in "line-printer" form) and tables can be printed according to the .PRINT, .PLOT, and .FOUR control lines, described next. .PLOT, .PRINT, and .FOUR lines are meant for compatibility with SPICE2.

5.1 .OPTIONS: Simulator Variables

Various parameters of the simulations available in WinSpice3 can be altered to control the accuracy, speed, or default values for some devices. These parameters may be changed via the "set" command (described later in the section on the interactive front-end) or via the ".OPTIONS" line:

General form:

.OPTIONS OPT1 OPT2 ... (or OPT=OPTVAL ...)

Examples:

.OPTIONS RELTOL=.005 TRTOL=8

The options line allows the user to reset program control and user options for specific simulation purposes. See the following section on the interactive command interpreter for the parameters that may be set with a .OPTIONS line and the format of the 'set' command. Any combination of the following options may be included, in any order. 'x' (below) represents some positive number.

option
effect

ABSTOL=x
Sets the absolute current error tolerance of the program.
The default value is 1 picoamp.

BADMOS3
Use the older version of the MOS3 model with the "kappa" discontinuity.

BYPASS=x
This option, when set to a non-zero value, avoids recomputation of nonlinear functions that do not change with iterations.

The default value is 0.

CAPBRANCH
Calculate capacitor branch currents during analyses. This is an experimental feature which can cause convergence problems but which may be useful in some cases.

CHGTOL=x
Sets the charge tolerance of the program. The default value is 1.0e-14.

DEFAD=x
Sets the value for MOS drain diffusion area; the default is 0.0.

DEFAS=x
Sets the value for MOS source diffusion area; the default is 0.0.

DEFL=x
Sets the value for MOS channel length; the default is 100.0 micrometer.

DEFW=x
Sets the value for MOS channel width; the default is 100.0 micrometer.

DELMIN=x
Sets the minimum timestep value used in transient analyses. If WinSpice3 tries to go below this value in attempting to achieve convergence, the analysis will be aborted.

A value of 0 disables the minimum limit. Any negative value sets the minimum timestep to (1E-9*TMAX) as in the original Spice3.

The default value is –1.

GMIN=x
Sets the value of GMIN, the minimum conductance allowed by the program. The default value is 1.0e-12.

ITL1=x
Sets the DC iteration limit. The default is 100.

ITL2=x
Sets the DC transfer curve iteration limit. The default is 50.

ITL3=x
Sets the lower transient analysis iteration limit. The default value is 4. (Note: not implemented in WinSpice3).

ITL4=x
Sets the transient analysis timepoint iteration limit. The default is 10.

ITL5=x
Sets the transient analysis total iteration limit. A value of 0 (the default) disables this limit.

KEEPOPINFO
Retain the operating point information when an AC, Distortion, or Pole-Zero analysis is run. This is particularly useful if the circuit is large and you do not want to run a (redundant) ".OP" analysis.

METHOD=name
Sets the numerical integration method used by SPICE. Possible names are "Gear" or "trapezoidal" (or just "trap").

The default is trapezoidal.

MINTIMESTEP=x
The same as DELMIN.

PIVREL=x
Sets the relative ratio between the largest column entry and an acceptable pivot value. The default value is 1.0e-3.

In the numerical pivoting algorithm the allowed minimum pivot value is determined by

EPSREL=AMAX1(PIVREL*MAXVAL, PIVTOL)

where MAXVAL is the maximum element in the column where a pivot is sought (partial pivoting).

PIVTOL=x
Sets the absolute minimum value for a matrix entry to be accepted as a pivot. The default value is 1.0e-13.

RELTOL=x
Resets the relative error tolerance of the program. The default value is 0.001 (0.1%).

RESBRANCH
Calculate resistor branch currents during analyses. This is an experimental feature which can cause convergence problems but which may be useful in some cases.

RSHUNT=x
Shunt resistors of value x are placed between all voltage nodes and node 0 (the ground node). This helps avoid nodes having no DC paths to ground and hence not converging. It also allow for more realistic circuits to be simulated.

If x is zero, shunt resistors are not placed in the circuit.

By default, x = 0.

SCALE=x
Element scaling factor used as a multiplier for device dimension parameters L, W, AD, AS, PD and PS. Currently used only used by the following device models:-

MOS1 (MOSFET level 1)
MOS2 (MOSFET level 2)
MOS3 (MOSFET level 3)
BSIM1 (MOSFET level 4)
BSIM2 (MOSFET level 5)
MOS6 (MOSFET level 6)
BSIM3 (MOSFET level 8)
EKV (MOSFET level 44)

The default value is 1.0.

TEMP=x
Sets the operating temperature of the circuit. The default value is 27 deg C (300 deg K). TEMP can be overridden by a temperature specification on any temperature dependent instance.

TNOM=x
Sets the nominal temperature at which device parameters are measured. The default value is 27 deg C (300 deg K).

TNOM can be overridden by a specification on any temperature dependent device model.

TRTOL=x
Sets the transient error tolerance. The default value is 7.0. This parameter is an estimate of the factor by which SPICE overestimates the actual truncation error.

TRYTOCOMPACT
Applicable only to the LTRA model.

When specified, the simulator tries to condense LTRA transmission lines' past history of input voltages and currents.

VNTOL=x
Sets the absolute voltage error tolerance of the program. The default value is 1 microvolt.

In addition, the following options have the listed effect when operating in SPICE2 emulation mode:

option
effect

ACCT
causes accounting and run time statistics to be printed

LIST
causes the summary listing of the input data to be printed

NOMOD
suppresses the printout of the model parameters

NOPAGE
suppresses page ejects

NODE
causes the printing of the node table.

OPTS
causes the option values to be printed.

5.2 Initial Conditions

5.2.1 .NODESET: Specify Initial Node Voltage Guesses

General form:

.NODESET V(NODNUM)=VAL V(NODNUM)=VAL ...

Examples:

.NODESET V(12)=4.5 V(4)=2.23

The Nodeset line helps the program find the DC or initial transient solution by making a preliminary pass with the specified nodes held to the given voltages. The restriction is then released and the iteration continues to the true solution. The .NODESET line may be necessary for convergence on bistable or a-stable circuits. In general, this line should not be necessary.

5.2.2 .IC: Set Initial Conditions

General form:

.IC V(NODNUM)=VAL V(NODNUM)=VAL ...

Examples:

.IC V(11)=5 V(4)=-5 V(2)=2.2

The IC line is for setting transient initial conditions. It has two different interpretations, depending on whether the UIC parameter is specified on the .TRAN control line. Also, one should not confuse this line with the .NODESET line. The .NODESET line is only to help DC convergence, and does not affect final bias solution (except for multi-stable circuits). The two interpretations of this line are as follows:

1. When the UIC parameter is specified on the .TRAN line, then the node voltages specified on the .IC control line are used to compute the capacitor, diode, BJT, JFET, and MOSFET initial conditions. This is equivalent to specifying the IC=... parameter on each device line, but is much more convenient. The IC=... parameter can still be specified and takes precedence over the .IC values. Since no DC bias (initial transient) solution is computed before the transient analysis, one should take care to specify all DC source voltages on the .IC control line if they are to be used to compute device initial conditions.

2. When the UIC parameter is not specified on the .TRAN control line, the DC bias (initial transient) solution is computed before the transient analysis. In this case, the node voltages specified on the .IC control line are forced to the desired initial values during the bias solution. During transient analysis, the constraint on these node voltages is removed. This is the preferred method since it allows SPICE to compute a consistent DC solution.

5.3 Analyses

5.3.1 .AC: Small-Signal AC Analysis

General form:

.AC DEC ND FSTART FSTOP

.AC OCT NO FSTART FSTOP

.AC LIN NP FSTART FSTOP

Examples:

.AC DEC 10 1 10K

.AC DEC 10 1K 100MEG

.AC LIN 100 1 100HZ

DEC stands for decade variation, and ND is the number of points per decade. OCT stands for octave variation, and NO is the number of points per octave. LIN stands for linear variation, and NP is the number of points. FSTART is the starting frequency, and FSTOP is the final frequency. If this line is included in the input file, WinSpice3 performs an AC analysis of the circuit over the specified frequency range. Note that in order for this analysis to be meaningful, at least one independent source must have been specified with an AC value.

5.3.2 .DC: DC Transfer Function

General form:

.DC SRCNAM VSTART VSTOP VINCR [SRC2 START2 STOP2 INCR2]

Examples:

.DC VIN 0.25 5.0 0.25

.DC VDS 0 10 .5 VGS 0 5 1

.DC VCE 0 10 .25 IB 0 10U 1U

The DC line defines the DC transfer curve source and sweep limits (again with capacitors open and inductors shorted). SRCNAM is the name of an independent voltage or current source. VSTART, VSTOP, and VINCR are the starting, final, and incrementing values respectively.

The first example causes the value of the voltage source VIN to be swept from 0.25 Volts to 5.0 Volts in increments of 0.25 Volts. A second source (SRC2) may optionally be specified with associated sweep parameters. In this case, the first source is swept over its range for each value of the second source. This option can be useful for obtaining semiconductor device output characteristics. See the second example circuit description in Appendix A.

5.3.3 .DISTO: Distortion Analysis

General form:

.DISTO DEC ND FSTART FSTOP <F2OVERF1>

.DISTO OCT NO FSTART FSTOP <F2OVERF1>

.DISTO LIN NP FSTART FSTOP <F2OVERF1>

Examples:

.DISTO DEC 10 1kHz 100Mhz

.DISTO DEC 10 1kHz 100Mhz 0.9

The DISTO line does a small-signal distortion analysis of the circuit. A multi-dimensional Volterra series analysis is done using multi-dimensional Taylor series to represent the nonlinearities at the operating point. Terms of up to third order are used in the series expansions.

If the optional parameter F2OVERF1 is not specified, .DISTO does a harmonic analysis - i.e., it analyses distortion in the circuit using only a single input frequency F1, which is swept as specified by arguments of the .DISTO command exactly as in the .AC command. Inputs at this frequency may be present at more than one input source, and their magnitudes and phases are specified by the arguments of the DISTOF1 keyword in the input file lines for the input sources (see the description for independent sources - the arguments of the DISTOF2 keyword are not relevant in this case). The analysis produces information about the AC values of all node voltages and branch currents at the harmonic frequencies 2F1 and 3F1, vs. the input frequency F1 as it is swept. A value of 1 (as a complex distortion output) signifies cos(2J(2F1)t) at 2F1 and cos(2J(3F1)t) at 3F1, using the convention that 1 at the input fundamental frequency is equivalent to cos(2JF1t). The distortion component desired (2F1 or 3F1) can be selected using commands in WinSpice3, and then printed or plotted (normally, one is interested primarily in the magnitude of the harmonic components, so the magnitude of the AC distortion value is looked at). It should be noted that these are the AC values of the actual harmonic components, and are not equal to HD2 and HD3. To obtain HD2 and HD3, one must divide by the corresponding AC values at F1, obtained from a .AC line. This division can be done using WinSpice3 commands.

If the optional F2OVERF1 parameter is specified, it should be a real number between (and not equal to) 0.0 and 1.0; in this case, .DISTO does a spectral analysis. It considers the circuit with sinusoidal inputs at two different frequencies F1 and F2. F1 is swept according to the .DISTO control line options exactly as in the .AC control line. F2 is kept fixed at a single frequency as F1 sweeps - the value at which it is kept fixed is equal to F2OVERF1 times FSTART. Each independent source in the circuit may potentially have two (superimposed) sinusoidal inputs for distortion, at the frequencies F1 and F2. The magnitude and phase of the F1 component are specified by the arguments of the DISTOF1 keyword in the source's input line (see the description of independent sources); the magnitude and phase of the F2 component are specified by the arguments of the DISTOF2 keyword. The analysis produces plots of all node voltages/branch currents at the intermodulation product frequencies F1 + F2, F1 - F2, and (2 F1) - F2, vs. the swept frequency F1. The IM product of interest may be selected using the Setplot command, and displayed with the print and plot commands. It is to be noted as in the harmonic analysis case, the results are the actual AC voltages and currents at the intermodulation frequencies, and need to be normalised with respect to .AC values to obtain the IM parameters.

If the DISTOF1 or DISTOF2 keywords are missing from the description of an independent source, then that source is assumed to have no input at the corresponding frequency. The default values of the magnitude and phase are 1.0 and 0.0 respectively. The phase should be specified in degrees.

It should be carefully noted that the number F2OVERF1 should ideally be an irrational number. Since this is not possible in practice, efforts should be made to keep the denominator in its fractional representation as large as possible, certainly above 3, for accurate results. That is, if F2OVERF1 is represented as a fraction A/B, where A and B are integers with no common factors, B should be as large as possible. Note that A < B because F2OVERF1 is constrained to be < 1.

To illustrate why, consider the cases where F2OVERF1 is 49/100 and 1/2. In a spectral analysis, the outputs produced are at F1 + F2, F1 - F2 and 2 F1 - F2. In the latter case, F1 - F2 = F2, so the result at the F1-F2 component is erroneous because there is the strong fundamental F2 component at the same frequency. Also, F1 + F2 = 2 F1 - F2 in the latter case, and each result is erroneous individually. This problem is not there in the case where F2OVERF1 = 49/100, because F1-F2 = 51/100 F1 < > 49/100 F1 = F2. In this case, there are two very closely spaced frequency components at F2 and F1 - F2. One of the advantages of the Volterra series technique is that it computes distortions at mix frequencies expressed symbolically (i.e. n F1 + m F2). Therefore one is able to obtain the strengths of distortion components accurately even if the separation between them is very small, as opposed to transient analysis for example. The disadvantage is of course that if two of the mix frequencies coincide, the results are not merged together and presented (though this could presumably be done as a post-processing step). Currently, the interested user should keep track of the mix frequencies and add the distortions at coinciding mix frequencies together, should it be necessary.

5.3.4 .NOISE: Noise Analysis

General form:

.NOISE V(OUTPUT <,REF>) SRC (DEC | LIN | OCT) PTS FSTART FSTOP

+ <PTS_PER_SUMMARY>

Examples:

.NOISE V(5) VIN DEC 10 1kHZ 100Mhz

.NOISE V(5,3) V1 OCT 8 1.0 1.0e6 1

The Noise line does a noise analysis of the circuit.

OUTPUT is the node at which the total output noise is desired; if REF is specified, then the noise voltage V(OUTPUT) - V(REF) is calculated. By default, REF is assumed to be ground. SRC is the name of an independent source to which input noise is referred. PTS, FSTART and FSTOP are .AC type parameters that specify the frequency range over which plots are desired. PTS_PER_SUMMARY is an optional integer; if specified, the noise contributions of each noise generator is produced every PTS_PER_SUMMARY frequency points. These are stored in the spectral density curves (use 'Setplot' command to select the correct set of curves.

The .NOISE control line produces two plots - one for the Noise Spectral Density curves and one for the total Integrated Noise over the specified frequency range. All noise voltages/currents are in units of V/Hz0.5 and A/Hz0.5 for spectral density, V and A for integrated noise.

NOTE: The output units are different from Berkeley Spice3. The output units for Berkeley Spice3 are in V2/Hz and A2/Hz for spectral density and V2 and A2 for integrated noise. This was changed to the format used by Spice2, Pspice etc for consistency and to prevent confusion.

For examples, take the simple circuit below:-

simple resistor circuit

*simple resistor circuit to test which ones of vspice, uf77spice and

* spice3 give the correct results

iin 1 0 1m AC

rl 1 0 1k

.noise v(1) iin dec 10 10 100k 1

.print noise onoise

.end

A sample session showing how WinSpice3 stores the results is shown below.

Spice 1 -> run

Noise analysis ...

Spice 2 -> setplot

 Type the name of the desired plot:

 new New plot

Current noise2 simple resistor circuit (Integrated Noise - V or A)

 noise1 simple resistor circuit (Noise Spectral Density Curves - (V or A)/sqrt(Hz))

 const Constant values (constants)

? noise1

Spice 3 -> display

Here are the vectors currently active:

Title: simple resistor circuit

Name: noise1 (Noise Spectral Density Curves - (V or A)/sqrt(Hz))

Date: Tue Aug 20 23:35:17 1996

 frequency : frequency, real, 41 long, grid = xlog [default scale]

 inoise_spectrum : voltage, real, 41 long

 onoise_rl : voltage, real, 41 long

 onoise_spectrum : voltage, real, 41 long

Spice 4 ->

The onoise_rl plot contains the noise contributions of resistor rl at each frequency point. If the last option on the .noise line had been omitted, this vector would not have been created.

NOTE: in SPICE2 the syntax for .noise lines was different and SPICE2 required an .AC line to be present. The .AC line is not required for WinSpice3. For your information, to make the circuit above work on SPICE2, the .noise line above would need to be replaced by

.ac dec 10 10 100k
.noise v(1) iin 1

5.3.5 .OP: Operating Point Analysis

General form:

.OP

The inclusion of this line in an input file directs WinSpice3 to determine the DC operating point of the circuit with inductors shorted and capacitors opened.

NOTE: a DC analysis is automatically performed prior to a transient analysis to determine the transient initial conditions, and prior to an AC small-signal, Noise, and Pole-Zero analysis to determine the linearized, small-signal models for non-linear devices (see the KEEPOPINFO in section 5.1).

5.3.6 .PZ: Pole-Zero Analysis

General form:

.PZ NODE1 NODE2 NODE3 NODE4 CUR POL

.PZ NODE1 NODE2 NODE3 NODE4 CUR ZER

.PZ NODE1 NODE2 NODE3 NODE4 CUR PZ

.PZ NODE1 NODE2 NODE3 NODE4 VOL POL

.PZ NODE1 NODE2 NODE3 NODE4 VOL ZER

.PZ NODE1 NODE2 NODE3 NODE4 VOL PZ

Examples:

.PZ 1 0 3 0 CUR POL

.PZ 2 3 5 0 VOL ZER

.PZ 4 1 4 1 CUR PZ

CUR stands for a transfer function of the type (output voltage)/(input current) while VOL stands for a transfer function of the type (output voltage)/(input voltage). POL stands for pole analysis only, ZER for zero analysis only and PZ for both. This feature is provided mainly because if there is a non-convergence in finding poles or zeros, then, at least the other can be found. Finally, NODE1 and NODE2 are the two input nodes and NODE3 and NODE4 are the two output nodes. Thus, there is complete freedom regarding the output and input ports and the type of transfer function.

In interactive mode (see section 6.9.30), the command syntax is the same except that the first field is PZ instead of .PZ. To print the results, one should use the command 'print all'.

5.3.7 .SENS: DC or Small-Signal AC Sensitivity Analysis

General form:

.SENS OUTVAR

.SENS OUTVAR AC DEC ND FSTART FSTOP

.SENS OUTVAR AC OCT NO FSTART FSTOP

.SENS OUTVAR AC LIN NP FSTART FSTOP

Examples:

.SENS V(1,OUT)

.SENS V(OUT) AC DEC 10 100 100k

.SENS I(VTEST)

The sensitivity of OUTVAR to all non-zero device parameters is calculated when the SENS analysis is specified. OUTVAR is a circuit variable (node voltage or voltage-source branch current).

The first form calculates sensitivity of the DC operating-point value of OUTVAR.

The second, third and fourth forms calculate sensitivity of the AC values of OUTVAR. The parameters listed for AC sensitivity are the same as in an AC analysis (see ".AC" above). The output values are in dimensions of change in output per unit change of input (as opposed to percent change in output or per percent change of input).

5.3.8 .TF: Transfer Function Analysis

General form:

.TF OUTVAR INSRC

Examples:

.TF V(5, 3) VIN

.TF I(VLOAD) VIN

The TF line defines the small-signal output and input for the DC small-signal analysis. OUTVAR is the small signal output variable and INSRC is the small-signal input source. If this line is included, WinSpice3 computes the DC small-signal value of the transfer function (output/input), input resistance, and output resistance. For the first example, WinSpice3 would compute the ratio of V(5, 3) to VIN, the small-signal input resistance at VIN, and the small-signal output resistance measured across nodes 5 and 3.

5.3.9 .TRAN: Transient Analysis

General form:

.TRAN TSTEP TSTOP <TSTART <TMAX>><UIC>

Examples:

.TRAN 1NS 100NS

.TRAN 1NS 1000NS 500NS

.TRAN 10NS 1US

TSTEP is the printing or plotting increment for line printer output. For use with the post processor, TSTEP is the suggested computing increment.

TSTOP is the final time, and TSTART is the initial time. If TSTART is omitted, it is assumed to be zero. The transient analysis always begins at time zero. In the interval <zero, TSTART>, the circuit is analysed (to reach a steady state), but no outputs are stored. In the interval <TSTART, TSTOP>, the circuit is analysed and outputs are stored.

TMAX is the maximum step size that WinSpice3 uses. By default, the program chooses either TSTEP or (TSTOP-TSTART)/50.0, whichever is smaller. TMAX is useful when one wishes to guarantee a computing interval that is smaller than the printer increment, TSTEP.

UIC (use initial conditions) is an optional keyword that indicates that the user does not want WinSpice3 to solve for the quiescent operating point before beginning the transient analysis. If this keyword is specified, WinSpice3 uses the values specified using IC=... on the various elements as the initial transient condition and proceeds with the analysis. If the .IC control line has been specified, then the node voltages on the .IC line are used to compute the initial conditions for the devices. Look at the description on the .IC control line for its interpretation when UIC is not specified.

NOTE: WinSpice3 uses a dynamic timestep algorithm where the timestep is varied according to the slope of the output curve. This helps to speed up analysis during parts of the curve that have small rates of change and concentrate the analysis where the rate of change is high. For this reason, the value of TSTEP is only used as a guide to the initial timestep.

A minimum timestep can be enforced in WinSpice3 using the DELMIN or MINTIMESTEP system variables (see section 5.1 in this document).

5.4 Batch Output

These lines are ignored by the interactive WinSpice3 and are only handled by the batch mode versions (cspice and bspice). They are provided for backward compatibility with SPICE2.

5.4.1 .SAVE Lines

General form:

.SAVE vector vector vector ...

Examples:

.SAVE i(vin) input output

.SAVE @m1[id]

.SAVE ALL

The vectors listed on the .SAVE line are recorded in the rawfile for use later with WinSpice3. The standard vector names are accepted.

If no .SAVE line is given, then the default set of vectors is saved (all node voltages and voltage source branch currents). If .SAVE lines are given, only those vectors specified are saved.

For more discussion on internal device data, see Appendix B. See also the section on the interactive command interpreter for information on how to use the rawfile. The interactive version of this statement is described in section 6.9.38.

5.4.2 .PRINT Lines

General form:

.PRINT PRTYPE OV1 <OV2 ... OV8>

Examples:

.PRINT TRAN V(4) I(VIN)

.PRINT DC V(2) I(VSRC) V(23, 17)

.PRINT AC VM(4, 2) VR(7) VP(8, 3)

The Print line defines the contents of a tabular listing of one to eight output variables. PRTYPE is the type of the analysis (DC, AC, TRAN, NOISE, or DISTO) for which the specified outputs are desired. SPICE2 restricts the output variable to the following forms (though this restriction is not enforced by WinSpice3):

V(N1<,N2>)

specifies the voltage difference between nodes N1 and N2. If N2 (and the preceding comma) is omitted, ground (0) is assumed. For AC analysis, V(N1<,N2>) gives the magnitude of the complex voltage. For compatibility with SPICE2, the following five additional values can be accessed for the AC analysis by replacing the "V" in V(N1,N2) with:

V
magnitude (same as VM below)

VR
real part

VI
imaginary part

VM
magnitude

VP
phase (in radians or degrees - see the units variable description)

VDB
20 log10(magnitude)

I(VXXXXXXX)

specifies the current flowing in the independent voltage source named VXXXXXXX. Positive current flows from the positive node, through the source, to the negative node. For the AC analysis, the corresponding replacements for the letter I may be made in the same way as described for voltage outputs i.e.

I
magnitude (same as IM below)

IR
real part

II
imaginary part

IM
magnitude

IP
phase (in radians or degrees - see the units variable description)

IDB
20 log10(magnitude)

Output variables for the noise and distortion analyses have a different general form from that of the other analyses.

There is no limit on the number of .PRINT lines for each type of analysis.

5.4.3 .PLOT Lines

General form:

.PLOT PLTYPE OV1 <(PLO1, PHI1)> <OV2 <(PLO2, PHI2)> ... OV8>

Examples:

.PLOT DC V(4) V(5) V(1)

.PLOT TRAN V(17, 5) (2,5) I(VIN) V(17) (1,9)

.PLOT AC VM(5) VM(31, 24) VDB(5) VP(5)

.PLOT DISTO HD2 HD3(R) SIM2

.PLOT TRAN V(5,3) V(4) (0,5) V(7) (0,10)

The Plot line defines the contents of one plot of from one to eight output variables. PLTYPE is the type of analysis (DC, AC, TRAN, NOISE, or DISTO) for which the specified outputs are desired. The syntax for the OV1 is identical to that for the .PRINT line and for the plot command in the interactive mode.

The letter X indicates the overlap of two or more traces on any plot.

When more than one output variable appears on the same plot, the first variable specified is printed as well as plotted. If a printout of all variables is desired, then a companion .PRINT line should be included.

There is no limit on the number of .PLOT lines specified for each type of analysis.

5.4.4 .FOUR: Fourier Analysis of Transient Analysis Output

General form:

.FOUR FREQ OV1 <OV2 OV3 ...>

Examples:

.FOUR 100K V(5)

The Four (or Fourier) line controls whether WinSpice3 performs a Fourier analysis as a part of the transient analysis. FREQ is the fundamental frequency, and OV1 the desired output vector. The Fourier analysis is performed over the interval <TSTOP-period, TSTOP>, where TSTOP is the final time specified for the transient analysis, and period is one period of the fundamental frequency. The DC component and the first nine harmonics are determined. For maximum accuracy, TMAX (see the .TRAN line) should be set to period/100.0 (or less for very high-Q circuits).

6 INTERACTIVE INTERPRETER

WinSpice3 consists of a simulator and a front-end for data analysis and plotting. The command line interface has most of the capabilities of the UNIX C-shell.

WinSpice3 can plot data from a simulation on a graphics terminal or a workstation display. Note that the raw output file is different from the data that SPICE2 writes to the standard output.

6.1 Command Interpretation

If a word is typed as a command, and there is no built-in command with that name, the directories in the sourcepath list (see section 6.2) are searched in order for the file. If it is found, it is read in as a command file (as if it had been loaded using the source command – see section 6.9.49).

Before it is read, however, the variable argc is set to the number of words following the filename on the command line, and argv is set to a list of those words. After the file is finished, these variables are unset. Note that if a command file calls another, it must save its argv and argc since they are altered. Also, command files may not be re-entrant since there are no local variables (of course, the procedures may explicitly manipulate a stack...). This way one can write scripts analogous to UNIX shell scripts for WinSpice3.

Note that for the script to work with WinSpice3, it must begin with a blank line (or whatever else, since it is thrown away) and then a line with .control on it. This is an unfortunate result of the source command being used for both circuit input and command file execution. Note also that this allows the user to merely type the name of a circuit file as a command and it is automatically run. The commands are executed immediately, without running any analyses that may be specified in the circuit (to execute the analyses before the script executes, include a run command in the script).

C-shell type quoting with "" and '', and backquote substitution may be used. Within single quotes, no further substitution (like history substitution) is done, and within double quotes, the words are kept together but further substitution is done. Any text between backquotes is replaced by the result of executing the text as a command to the shell.

If any command takes a filename, the filename must be enclosed in double quotes if the filename contains spaces (as is permitted in Windows long filenames).

You may type multiple commands on one line, separated by semicolons.

There are various command scripts installed in \???\lib\scripts (where \??? is the directory containing the .EXE file), and the default sourcepath variable includes this directory, so you can use these command files (almost) like built-in commands. In fact, the setplot command is actually implemented as a script in this way.

6.2 Variables

The operation of WinSpice3 may be affected by setting variables with the set command. In addition to the variables mentioned below, the set command in WinSpice3 also affect the behaviour of the simulator via the options previously described under the section on ".OPTIONS".

Variables can contain text strings, numbers or be Boolean (i.e. have the meaning TRUE or FALSE). Variables can be defined and deleted with the set and unset commands (see later). String and number variables can be defined with a command of the form:-

set {variable}={value}

Boolean variables are a little odd in that they take the value TRUE if they are defined and FALSE if they do not exist. For example, the variable slowplot can be set to TRUE with the command

set slowplot

Setting a variable like slowplot to FALSE is done with the command

unset slowplot

To enter a list (e.g. the sourcepath variable), the list must be supplied within ‘(‘ and ‘)’ e.g.

set sourcepath = (. c:\mike\spice3f5)

The variables in WinSpice3 which may be altered by the set command are:

Variable
Type
Description

appendwrite
Boolean
Append to the file when a write command is issued, if one already exists.

colorN

These variables determine the colours used for plots. Colour 0 is the background, colour 1 is the grid and text colour, and colours 2 onwards are used in order for vector plots.

On Unix/Linux, N may be in the range 0-15. The value of the colour variables should be names of colours, which may be found in the file /usr/lib/rgb.txt.

In Windows, N can be in the range 0-19 and the available colour names are:-

white

black

lt_red

lt_green

lt_blue

lt_yellow

lt_cyan

lt_magenta

red

green

blue

yellow

cyan

magenta

grey

brown

orange

pink

cpdebug
Boolean
Print cshpar debugging information (must be complied with the -DCPDEBUG flag). Unsupported in the current release.

debug
Boolean
If set then a lot of debugging information is printed (must be compiled with the -DFTEDEBUG flag). Unsupported in the current release.

device
String
The name (/dev/tty??) of the graphics device. If this variable isn't set then the user's terminal is used. To do plotting on another monitor you probably have to set both the device and term variables. (If device is set to the name of a file, WinSpice3 dumps the graphics control codes into this file -- this is useful for saving plots.)

diff_abstol
Real
The absolute tolerance used by the diff command.

diff_reltol
Real
The relative tolerance used by the diff command.

diff_vntol
Real
The absolute voltage tolerance used by the diff command.

echo
Boolean
Print out each command before it is executed.

exec_path
String
Path to the WinSpice executable.

filetype
String
This can be either ascii or binary, and determines the file format used by the write command (see section 6.9.66) is used.

The default is ascii.

fourgridsize
Number
How many points to use for interpolating into when doing Fourier analysis.

gridsize
Number
If this variable is set to an integer, this number is used as the number of equally spaced points to use for the Y-axis when plotting. Otherwise the current scale is used (which may not have equally spaced points). If the current scale isn't strictly monotonic, then this option has no effect.

gridstyle
String
Sets the style of grid to be used. The possible values are:-

lingrid

loglog

xlog

ylog

smith

smithgrid

polar

nogrid
See the plot command for details.

hcopydev
String
If this is set, when the hardcopy command is run the resulting file is automatically printed on the printer named hcopydev with the command lpr -Phcopydev -g file.

hcopyfont
String
This variable specifies the font name for hardcopy output plots. The value is device dependent.

hcopyfontsize
String
The font size for hardcopy plots.

hcopyfontscale
String
This is a scaling factor for the font used in hardcopy plots.

hcopydevtype
String
This variable specifies the type of the printer output to use in the hardcopy command. If hcopydevtype is not set, plot(5) format is assumed. The standard distribution currently recognises postscript as an alternative output format. When used in conjunction with hcopydev, hcopydevtype should specify a format supported by the printer.

height
Number
The length of the page for asciiplot and print col.

history
Number
The number of events to save in the history list.

lprplot5
String
This is a printf(3s) style format string used to specify the command to use for sending plot(5)-style plots to a printer or plotter. The first parameter supplied is the printer name, the second parameter supplied is a file name containing the plot. Both parameters are strings. It is trivial to cause WinSpice3 to abort by supplying an unreasonable format string.

lprps
String
This is a printf(3s) style format string used to specify the command to use for sending PostScript plots to a printer or plotter. The first parameter supplied is the printer name, the second parameter supplied is a file name containing the plot. Both parameters are strings. It is trivial to cause WinSpice3 to abort by supplying a unreasonable format string.

maxcircuits
Number
The maximum number of circuits that WinSpice3 will store. When a circuit is opened with the source command, and the number of circuits exceeds this value, the earliest circuit is deleted.

A list of circuits in the system can be displayed using the setcirc command (see section 6.9.41 for details).

maxplots
Number
The maximum number of plot windows that can be open. As new plots are created, old ones are closed.

If maxplots is zero, automatic closure of plot windows is disabled. If maxplots is not defined, a maximum of 10 plots can be displayed.

nfreqs
Number
The number of frequencies to compute in the fourier command. (Defaults to 10.)

nobreak
Boolean
Don't have asciiplot and print col break between pages.

noasciiplotvalue
Boolean
Don't print the first vector plotted to the left when doing an asciiplot.

noclobber
Boolean
Don't overwrite existing files when doing IO redirection.

noglob
Boolean
Don't expand the global characters `*', `?', `[', and `]'. This is the default.

nogrid
??? Does nothing!
Don't plot a grid when graphing curves (but do label the axes).

nomoremode
Boolean
If nomoremode is not set, whenever a large amount of data is being printed to the screen (e.g., the print or asciiplot commands), the output is stopped every screenful and continues when a carriage return is typed. If nomoremode is set then data scrolls off the screen without check.

nonomatch

If noglob is unset and a global expression cannot be matched, use the global characters literally instead of complaining.

nosort
Boolean
Don't have display sort the variable names.

nopadding
Boolean
If TRUE, enables rawfile padding.

noprintscale
Boolean
Don't print the scale in the leftmost column when a print col command is given.

numdgt
??? Does nothing!
The number of digits to print when printing tables of data (fourier, print col). The default precision is 6 digits. Approximately 16 decimal digits are available using double precision, so numdgt should not be more than 16. If the number is negative, one fewer digit is printed to ensure constant widths in tables.

plotstyle
String
This should be one of linplot, combplot, or pointplot:chars. linplot, the default, causes points to be plotted as parts of connected lines. combplot causes a comb plot to be done (see the description of the combplot variable above). pointplot causes each point to be plotted separately - the chars are a list of characters that are used for each vector plotted. If they are omitted then a default set is used.

pointchars
String
A string of characters to be used when plotstyle is set to pointplot or the pointplot keyword is used in the plot command. If not defined, and internal set of characters is used.

polydegree
Number
The degree of the polynomial that the plot command should fit to the data. If polydegree is N, then WinSpice3 fits a degree N polynomial to every set of N points and draw 10 intermediate points in between each endpoint. If the points aren't monotonic, then it tries rotating the curve and reducing the degree until a fit is achieved.

polysteps
Number
The number of points to interpolate between every pair of points available when doing curve fitting. The default is 10.

printinfo
???
???

program
String
The name of the current program (argv[0]).

prompt
String
The prompt, with the character `!' replaced by the current event number.

rawfile
String
The default name for rawfiles created.

remote_shell
String
Overrides the name used for generating rspice runs (default is "rsh").

slowplot
Boolean
Stop between each graph plotted and wait for the user to type return before continuing.

sourcepath
List
A list of the directories to search when a source command is given. The default is the current directory and the standard SPICE library (/usr/local/lib/spice, or whatever LIBPATH is #defined to in the WinSpice3 source).

term
String
The mfb name of the current terminal.

ticmarks
Number or Boolean
If this variable is defined with a numerical value n e.g. 'set ticmarks=5', then every nth point on a plot is marked with a character.

If defined as a Boolean variable i.e. with no number supplied, a ticmark is printed every 10 plot points.

ticdata
???
???

units
String
If set to degrees, then all the trig functions will use degrees instead of radians. This also means that the ph() operator for phase also give a phase angle in degrees.

unixcom
Boolean
If this variable is defined, the interactive command line will attempt to run a program with the same name.

verbose
Boolean
Be verbose. This is midway between echo and debug/cpdebug.

width
Number
The width of the page for asciiplot and print col.

x11lineararcs
Boolean
Some X11 implementations have poor arc drawing. If you set this option, WinSpice3 will plot using an approximation to the curve using straight lines.

xbrushheight

The height of the brush to use if X is being run.

xbrushwidth
Number
The width of the brush to use if X is being run.

xfont

The name of the X font to use when plotting data and entering labels. The plot may not look good if this is a variable-width font.

There are several set variables that WinSpice3 uses. They are:

Variable
Type
Description

editor
String
The command used to start the circuit editor.. Used by the edit command.

modelcard
String
The name of the model card (normally .model).

modelline
String
The name of the model card (normally .model).

Same as modelcard.

noaskquit
Boolean
Do not check to make sure that there are no circuits suspended and no plots unsaved. Normally WinSpice3 warns the user when he tries to quit if this is the case.

nobjthack
Boolean
Assume that BJTs have 4 nodes.

noparse
Boolean
Don't attempt to parse input files when they are read in (useful for debugging). Of course, they cannot be run if they are not parsed.

nosubckt
Boolean
Don't expand subcircuits.

renumber
Boolean
Renumber input lines when an input file has .include's.

subend
String
The card to end subcircuits (normally .ends)

subinvoke
String
The prefix to invoke subcircuits (normally x).

Substart
String
The card to begin subcircuits (normally .subckt)

6.3 Variable Substitution

The values of variables may be used in commands by writing $varname where the value of the variable is to appear.

The special variables $$ and $< refer to the process ID of the program and a line of input which is read from the terminal when the variable is evaluated, respectively.

If a variable has a name of the form $&word, then word is considered a vector (see above), and its value is taken to be the value of the variable.

If $foo is a valid variable, and is of type list, then the expression $foo[low-high] represents a range of elements. Either the upper index or the lower may be left out, and the reverse of a list may be obtained with $foo[len-0]. Also, the notation $?foo evaluates to 1 if the variable foo is defined, 0 otherwise, and $#foo evaluates to the number of elements in foo if it is a list, 1 if it is a number or string, and 0 if it is a boolean variable.

6.4 Redirection

IO redirection is available in the same was as is found in the MSDOS and UNIX command shells as follows:-

Description

> file
Sends standard output to file. If the file already exists, it is truncated to zero length and its contents discarded. If it doesn't exist, it is created.

>> file
Appends standard output to file. If the file already exists, the output is added to the end of the file. If it doesn't exist, it is created.

>& file
Sends standard output and standard error streams to file. If the file already exists, it is truncated to zero length and its contents discarded. If it doesn't exist, it is created.

>>&
Appends standard output and standard error streams to file. If the file already exists, the output is added to the end of the file. If it doesn't exist, it is created.

< file
Takes standard input from the file file

6.5 Vectors & Scalars

WinSpice3 data is in the form of vectors: time, voltage, etc. Each vector has a type, and vectors can be operated on and combined algebraically in ways consistent with their types. Vectors are normally created when a data file is read in (see the load command in section 6.9.25), and when the initial datafile is loaded. They can also be created with the let command (see section 6.9.22).

A scalar is a vector of length 1.

A vector may be either the name of a vector already defined or a floating-point number (a scalar). A number may be written in any format acceptable to SPICE, such as 14.6Meg or -1.231e-4. Note that you can either use scientific notation or one of the abbreviations like MEG or G, but not both. As with SPICE, a number may have trailing alphabetic characters after it.

The notation expr [num] denotes the num'th element of expr. For multi-dimensional vectors, a vector of one less dimension is returned. Also for multi-dimensional vectors, the notation expr[m][n] will return the nth element of the mth subvector. To get a subrange of a vector, use the form expr[lower, upper].

To reference vectors in a plot that is not the current plot (see the setplot command, below), the notation plotname.vecname can be used.

Either a plotname or a vector name may be the wildcard all. If the plotname is all, matching vectors from all plots are specified, and if the vector name is all, all vectors in the specified plots are referenced.

Vector names in SPICE may have a name such as @name[param], where name is either the name of a device instance or model. This denotes the value of the param parameter of the device or model. See Appendix B for details of what parameters are available. The value is a vector of length 1. This function is also available with the show command, and is available with variables for convenience for command scripts.

6.5.1 Expressions

An expression is an algebraic formula involving vectors and scalars and the following operations:

+ - * / ^ %

% is the modulo operator, and the comma operator has two meanings: if it is present in the argument list of a user-definable function, it serves to separate the arguments. Otherwise, the term x , y is synonymous with x + j(y).

Also available are the logical operations & (and), | (or), ! (not), and the relational operations <, >, >=, <=, =, and <> (not equal). If used in an algebraic expression they work like they would in C, producing values of 0 or 1. The relational operators have the following synonyms:

gt
>

lt
<

ge
>=

le
<=

ne
<>

eq
=

and
&

or
|

not
!

These are useful when < and > might be confused with IO redirection (which is almost always).

Note that you may not use binary operations on expressions involving wildcards - it is not obvious what all + all should denote, for instance.

Thus some (contrived) examples of expressions are:

cos(TIME) + db(v(3))

sin(cos(log([1 2 3 4 5 6 7 8 9 10])))

TIME * rnd(v(9)) - 15 * cos(vin#branch) ^ [7.9e5 8]

not ((ac3.FREQ[32] & tran1.TIME[10]) gt 3)

6.5.2 Functions

The following functions are available:

Function
Description

mag(vector)
magnitude(vector)
The result is a REAL vector with each element containing the magnitude of each element in the COMPLEX vector vector.

ph(vector)
phase(vector)
The result is a REAL vector with each element containing the phase of each element in the COMPLEX vector vector.

If the units variable is not defined, the phase is in radians. If units has the value of degrees, the phase angle will be in degrees.

j(vector)
i (sqrt(-1)) times COMPLEX vector vector.

real(vector)
re(vector)
The real component of vector

imag(vector)
im(vector)
The imaginary part of vector

db(vector)
20 log10(mag(vector))

log(vector)
log10(vector)
The logarithm (base 10) of vector

ln(vector)
The natural logarithm (base e) of vector

exp(vector)
e to the vector power

abs(vector)
The absolute value of vector i.e. the magnitude. Same as mag(vector).

sqrt(vector)
The square root of vector.

sin(vector)
The sine of vector.

cos(vector)
The cosine of vector.

tan(vector)
The tangent of vector.

atan(vector)
The inverse tangent of vector.

norm(vector)
The vector normalised to 1 (i.e., the largest magnitude of any component is 1).

rnd(vector)
A vector with each component a random integer between 0 and the absolute value of the vector’s corresponding component.

pos(vector)
The result is a vector containing 1.0 if the corresponding element of vector was >0.0 and zero otherwise.

mean(vector)
The result is a scalar (a length 1 vector) that is the mean of the elements of the vector.

sum(vector)
The result is a scalar (a length 1 vector) that is the sum of the elements of the vector.

vector(number)
The result is a vector of length number, with elements 0, 1, ... number - 1. If number is a vector then just the first element is taken, and if it isn't an integer then the floor of the magnitude is used.

unitvec(vector)
The result is a vector with each component set to 1.0. The length of the resultant vector is the value of the first number in vector. If vector was complex, the length is mag(vector[0]).

length(vector)
The result is a scalar (a length 1 vector) that is the length of the vector vector.

gd(vector)
The result is a vector which contains the group delay of complex vector vector.

rad(vector)
Perform degree-radian conversion on vector vector.

deg(vector)
Perform radian-degree conversion on vector vector.

interpolate(plot.vector)
The result of interpolating the named vector onto the scale of the current plot. This function uses the variable polydegree to determine the degree of interpolation.

deriv(vector)
Calculates the derivative of the given vector. This uses numeric differentiation by interpolating a polynomial and may not produce satisfactory results (particularly with iterated differentiation). The implementation only calculates the derivative with respect to the real component of that vector's scale.

6.5.3 Constants

There are a number of pre-defined scalar constants in WinSpice3 which can be used in expressions. They are:

Constant
Description

true
The value 1

yes
The value 1

no
The value 0

false
The value 0

pi
 (3.14159...)

e
The base of natural logarithms (2.71828...)

c
The speed of light (299,792,500 m/sec)

i
The square root of –1 i.e. (0, 1)

kelvin
Absolute 0 in Centigrade (-273.15 °C)

echarge
The charge on an electron (1.6021918e-19 C)

boltz
Boltzman's constant (1.3806226e-23)

planck
Planck's constant (h = 6.626200e-34)

These are all in MKS units. If you have another variable with a name that conflicts with one of these then it takes precedence.

6.6 History Substitutions

A history substitution enables you to reuse a portion of a previous command as you type the current command. History substitutions save typing and also help reduce typing errors.

A history substitution normally starts with a ‘!’. A history substitution has three parts: an event that specifies a previous command, a selector that selects one or more word of the event, and some modifiers that modify the selected words. The selector and modifiers are optional. A history substitution has the form

![event][[:]selector[:modifier] . . .]

The event is required unless it is followed by a selector that does not start with a digit. The ‘:’ can be omitted before selector if selector does not begin with a digit.

History substitutions are interpreted before anything else – even before quotations and command substitutions. The only way to quote the ‘!’ of a history substitution is to escape it with a preceding backslash. A ‘!’ need not be escaped , however, if it is followed by whitespace, ‘=’, or ‘(‘.

6.6.1 Events and Their Specifications

WinSpice3 saves each command that you type on a history list provided that the command contains at least one word. The commands on the history list are called events. The events are numbered, with the first command that you issue when you start WinSpice being number one. For complex commands such as ‘for’ that consist of more than one line, only the first line makes its way to the history list. The history variable specified how many events are retained on the history list. You can view the history list with the history command (see section 6.9.20 on Page 75).

These are the forms of an event in a history substitution:

!!
The preceding event. Typing ‘!!’ is an easy way to reissue the previous command.

!n
Event number n.

!-n
The nth previous event. For example, ‘!-1’ refers to the immediately preceding event and is equivalent to ‘!!’.

!str
The unique previous event whose name starts with str.

!?str?
The unique previous event containing the string str. The closing ‘?’ can be omitted if it is followed by a newline.

6.6.2 Selectors

You can select a subset of the words of an event by attaching a selector to the event. A history substitution without a selector includes all of the words of the event. These are the possible selectors for selecting words of the event:

:0
The command name.

[:]^
The first argument.

[:]$
The last argument.

:n
The nth argument (n (1)

:n1-n2
Words n1 through n2

[:]*
Words 1 through $

:x*
Words x through $

:x-
Words x through ($ - 1)

[:]-x
Words 0 through x

[:]%
The word matched by the preceding ‘?str?’ search

The colon preceding a selector can be omitted if the selector does not start with a digit.

6.6.3 Modifiers

You can modify the words of an event by attaching one or more modifiers. Each modifier must be preceded by a colon.

The following modifiers assume that the first selected word is a file name:

:r
Removes the trailing ‘.str’ extension from the first selected word.

:h
Removes a trailing path name component from the first selected word.

:t
Removes all leading path name components from the first selected word.

For example, if the command

ls –l /usr/elsa/toys.txt

has just been executed, then the command

echo !!^:r !!^:h !!^:t !!^:t:r

produces the output

/usr/else/toys /usr/elsa toys.txt toys

The following modifiers enable you to substitute within the selected words of an event. If the modifier includes ‘g’, the substitution applies to the entire event; otherwise it applies only to the first modifiable word.

:[g]s/l/r
Substitutes the string r for the string l. The delimiter ‘/’ may be replaced by any other delimiting character. Within the substitution, the delimiter can be quoted by escaping it with ‘\’. If l is empty, the most recently used string takes its place – either a previous l or the string str in an event selector of the form ‘!?str?’. The closing delimiter can be omitted if it is followed by a newline.

:[g]&
Repeats the previous substitution.

The following modifiers quote the selected words, possibly after earlier substitutions:

:q
Quotes the selected words, preventing further substitutions.

:x
Quotes the selected words but breaks the selected text into words at whitespace.

:p
Shows (“prints”) the new command but doesn’t execute it.

6.6.4 Special Conventions

The following additional special conventions provide abbreviations for commonly used forms of history substitution:

· An event specification can be omitted from a history substitution if it is followed by a selector that does not start with a digit. In this case the event is taken to be the event used in the most recent history reference on the same line if there is one, or the preceding event otherwise. For example, the command

Echo !?quetzal?^ !$

echoes the first and last arguments of the most recent command containing the string ‘quetzal’.

· If the first nonblank character of an input line is ‘^’, the ‘^’ is taken as an abbreviation for ‘!:s^’. This form provides a convenient way to correct a simple spelling error in the previous line. For example, if by mistake you typed the command

cat /etc/lasswd

you could re-execute the command with ‘lasswd’ changed to ‘passwd’ by typing

^l^p

· You can enclose a history substitution in braces to prevent it from absorbing the following characters. In this case the entire substitution except for the starting ‘!’ must be within the braces. For example, suppose that you previously issued the command

cp accounts ../money

Then the command ‘!cps’ looks for a previous command starting with ‘cps’ while the command ‘!{cp}s’ turns into a command

cp accounts ../moneys

6.7 Filename Expansions

The characters ~, {, and } have the same effects as they do in the C-Shell, i.e., home directory and alternative expansion. It is possible to use the wildcard characters *, ?, [, and] also, but only if you unset noglob first. This makes them rather useless for typing algebraic expressions, so you should set noglob again after you are done with wildcard expansion. Note that the pattern [^abc] matches all characters except a, b, and c.

6.8 Control Structures

6.8.1 While - End

General Form

while condition

 statement

 ...

end

While condition, an arbitrary algebraic expression, is true, execute the statements.

The condition is an expression involving vector and scalar variables (see sections 6.5 and 6.5.1).

For example, the following will sweep a resistor value:-

.control

echo ***

echo Sweep altering R1 directly

echo ***

let res = 1

while res <= 100

 alter @r1[resistance] = res

 op

 print v(1) v(2)

 let res = res + 5

end

.endc

6.8.2 Repeat - End

General Form

repeat [number]

 statement

 ...

end

Execute the statements number times, or forever if no argument is given.

6.8.3 Dowhile - End

General Form

dowhile condition

 statement

 ...

end

The same as while, except that the condition is tested after the statements are executed.

The condition is an expression involving vector and scalar variables (see sections 6.5 and 6.5.1).

6.8.4 Foreach - End

General Form

foreach var value ...

 statement

 ...

end

The statements are executed once for each of the values in the list, each time with the variable ‘var’ set to the current one. ‘var’ can be accessed by the $var notation (see sections 6.2 and 6.3 for details).

6.8.5 If - Then - Else

General Form

if condition

 statement

 ...

else

 statement

 ...

end

If the condition is non-zero then the first set of statements are executed, otherwise the second set. The else and the second set of statements may be omitted.

The condition is an expression involving vector and scalar variables (see sections 6.5 and 6.5.1).

6.8.6 Label

General Form

label word

If a statement of the form goto word is encountered, control is transferred to this point, otherwise this is a no-op.

6.8.7 Goto

General Form

goto word

If a statement of the form label word is present in the block or an enclosing block, control is transferred there. Note that if the label is at the top level, it must be before the goto statement (i.e., a forward goto may occur only within a block).

6.8.8 Continue

General Form

continue

If there is a while, dowhile, or foreach block enclosing this statement, control passes to the test, or in the case of foreach, the next value is taken. Otherwise an error results.

6.8.9 Break

General Form

break

If there is a while, dowhile, or foreach block enclosing this statement, control passes out of the block. Otherwise an error results.

Of course, control structures may be nested. When a block is entered and the input is the terminal, the prompt becomes a number of >'s corresponding to the number of blocks the user has entered. The current control structures may be examined with the debugging command cdump.

6.9 Commands

6.9.1 Ac: Perform an AC frequency response analysis

General Form

ac (DEC | OCT | LIN) N Fstart Fstop

Do an AC analysis. See section 5.3.1 of this manual for more details.

6.9.2 Alias: Create an alias for a command

General Form

alias [word] [text ...]

Causes word to be aliased to text. History substitutions may be used, as in C-shell aliases.

6.9.3 Alter: Change a device or model parameter

General Form

alter name = expression

alter name parameter = expression

alter @name[parameter] = expression

Alter changes the value for a device or a specified parameter of a device or model. The first form is used by simple devices which have one principal value (resistors, capacitors, etc.) where the second and third forms are for more complex devices (BJTs, etc.).

If ‘name’ is the name of a device instance then the command will change a parameter within an individual device instance e.g.

alter @m1[temp] = 273

If ‘name’ is the name of a model then the command will change a model parameter and this will affect all device instances in the circuit which use this model e.g.

alter @nmos[lambda] = 3

For specifying vectors as expressions, start the vector with "[", followed by the values in the vector, and end with "]". Be sure to place a space between each of the values and before and after the "[" and "]".

Lists of alterable parameters for each device model is given in section 10. Only these parameters will be accepted for a given device.

6.9.4 Asciiplot: Plot values using old-style character plots

General Form

asciiplot plotargs

Produce a line printer plot of the vectors. The plot is sent to the standard output, so you can put it into a file with asciiplot args ... > file. The set options width, height, and nobreak determine the width and height of the plot, and whether there are page breaks, respectively. Note that you will have problems if you try to asciiplot something with an X-scale that isn't monotonic (i.e., something like sin(TIME)), because asciiplot uses a simple-minded linear interpolation.

6.9.5 Bug: Mail a bug report

General Form

bug

Send a bug report. Please include a short summary of the problem, the version number and name of the operating system that you are running, the version of SPICE that you are running, and the relevant SPICE input file. If you have defined BUGADDR, the mail is delivered to there.

NOTE: this command does not work yet – but it seems too useful to take out! Future versions of WinSpice3 will use this command to email bug reports to the author.

6.9.6 Cd: Change directory

General Form

cd [directory]

Change the current working directory to directory. Displays the current directory if [directory] is not given.

6.9.7 Cross: Create a new vector

General Form

cross vecname n [vector1 vector2 ...]

Create a new vector vecname.from index n in each of the input vectors. n=0 selects the first item in each vector. If any input vector is complex then the output vector will be complex.

The index value n may be a constant or a vector. If n is not scalar, only the first value in the vector is used. If n is a complex vector, only the real part is used.

This command can be used to get the nth value in a vector e.g.

cross val 5 v(3)

let index = 5

cross val index v(3)

Both of the above are equivalent. The second example uses scalar vector ‘index’ to fetch the 6th item in vector v(3).

6.9.8 Dc: Perform a DC-sweep analysis

General Form

dc Source-Name Vstart Vstop Vincr [Source2 Vstart2 Vstop2 Vincr2]

Do a DC transfer curve analysis. See section 5.3.2 of this manual for more details.

6.9.9 Define: Define a function

General Form

define function(arg1, arg2, ...) expression

Define the user-definable function with the name function and arguments arg1, arg2, ... to be expression, which may involve the arguments. When the function is later used, the arguments it is given are substituted for the formal arguments when it is parsed. If expression is not present, any definition for function is printed, and if there are no arguments to define then all currently active definitions are printed. Note that you may have different functions defined with the same name but different arities.

Some useful definitions are:

define max(x,y) (x > y) * x + (x <= y) * y

define min(x,y) (x < y) * x + (x >= y) * y

6.9.10 Delete: Remove a trace or breakpoint

General Form

delete [debug-number ...]

Delete the specified breakpoints and traces. The debug-numbers are those shown by the status command (unless you do status > file, in which case the debug numbers are not printed).

6.9.11 Destroy: Delete a data set (plot)

General Form

destroy [plotnames | all]

Release the memory holding the data for the specified runs.

The command ‘destroy all’ also resets plot numbering back to 1 such that running an AC analysis, say, after ‘destroy all’ always generates the ‘ac1’ plot vector. This is useful if .cir files contain plot lines which address explicit plot names like ‘tran1.v(6)’ because if other circuits are run first then the plot numbering may be changed.

6.9.12 Diff: Compare vectors

General Form

diff plot1 plot2 [vec ...]

Compare all the vectors in the specified plots, or only the named vectors if any are given. There are different vectors in the two plots, or any values in the vectors differ significantly the difference is reported. The variable diff_abstol, diff_reltol, and diff_vntol are used to determine a significant difference.

6.9.13 Display: List known vectors and types

General Form

display [varname ...]

Prints a summary of currently defined vectors, or of the names specified. The vectors are sorted by name unless the variable nosort is set. The information given is the name of the vector, the length, the type of the vector, and whether it is real or complex data. Additionally, one vector is labelled [scale]. When a command such as plot is given without a ‘vs’ argument, this scale is used for the X-axis. It is always the first vector in a rawfile, or the first vector defined in a new plot. If you undefine the scale (i.e., let TIME = []), one of the remaining vectors becomes the new scale (which is undetermined).

6.9.14 Disto: Perform a distortion analysis

General Form

disto DEC ND FSTART FSTOP <F2OVERF1>

disto OCT NO FSTART FSTOP <F2OVERF1>

disto LIN NP FSTART FSTOP <F2OVERF1>

Examples:

disto dec 10 1kHz 100Mhz

disto dec 10 1kHz 100Mhz 0.9

The command line form of the .DISTO directive. See section 5.3.3 for details.

6.9.15 Echo: Print text

General Form

echo [text...]

Echoes the given text to the screen.

6.9.16 Edit: Edit the current circuit

General Form

edit [file]

Open the current WinSpice3 input file in the editor and allow the user to modify it. While the editor is running, WinSpice3 watches for the original file to be updated and, if so, reads the file back in. If a filename is given, then edit that file and load it, making the circuit the current one.

By default, Windows Notepad is used. This can be changed by setting the environment variable editor (see section 6.2) e.g.

WinSpice3 18 -> set editor="c:\program files\accessories\wordpad.exe"

WinSpice3 19 -> edit

6.9.17 Fourier: Perform a fourier transform

General Form

fourier fundamental_frequency [value ...]

Does a fourier analysis of each of the given values, using the first 10 multiples of the fundamental frequency (or the first nfreqs, if that variable is set - see below). The output is like that of the .four WinSpice3 line. The values may be any valid expression. The values are interpolated onto a fixed-space grid with the number of points given by the fourgridsize variable, or 200 if it is not set. The interpolation is of degree polydegree if that variable is set, or 1. If polydegree is 0, then no interpolation is done. This is likely to give erroneous results if the time scale is not monotonic, though.

6.9.18 Hardcopy: Save a plot to a file for printing

General Form

hardcopy file plotargs

Just like plot, except creates a file called file containing the plot. The file is an image in plot(5) format, and can be printed by either the plot(1) program or lpr with the -g flag.

6.9.19 Help: Print summaries of WinSpice3 commands

General Form

help [all] [command ...]

Prints help. If the argument ‘all’ is given, a short description of everything you could possibly type is printed. If commands are given, descriptions of those commands are printed. Otherwise help for only a few major commands is printed.

6.9.20 History: Review previous commands

General Form

history [number]

Print out the history, or the last number commands typed at the keyboard.

6.9.21 Iplot: Incremental plot

General Form

iplot [node ...]

Example

iplot v(1) v(2)

Incrementally plot the values of the nodes while WinSpice3 runs. The iplot command can be used with the where command to find trouble spots in a transient simulation.

The iplot command adds a form of visual trace to the circuit. See the trace command (section 6.9.56) for a different type of trace that is available.

Several iplot commands may be active at once. Iplotting is not applicable for all analyses. To remove an iplot trace entry, use the delete command (see section 6.9.10). To display a list of iplots, use the status command (see section 6.9.51).

6.9.22 Let: Assign a value to a vector

General Form

let name = expr

Creates a new vector called name with the value specified by expr, an expression as described above. If expr is [] (a zero-length vector) then the vector becomes undefined. Individual elements of a vector may be modified by appending a subscript to name (ex. name[0]).

A vector variable can be used within the scripting language like variables in other languages. For example:-

.control

 destroy all

 let ii = 0

 while ii < 2

 alter r1 = 10k + 10k * ii

 ac dec 10 1 10k

 let ii = ii + 1

 end

 plot db(ac1.v(2)) db(ac2.v(2))

.endc

v1 1 0 dc 0 ac 1

r1 1 2 1k

c1 2 0 1uf

.end

In the example shown, ‘ii’ is a single-element vector (scalar) used as a loop counter.

6.9.23 Linearize: Interpolate to a linear scale

General Form

linearize [vec ...]

Create a new plot with all of the vectors in the current plot, or only those mentioned if arguments are given. The new vectors are interpolated onto a linear time scale, which is determined by the values of tstep, tstart, and tstop in the currently active transient analysis. The currently loaded input file must include a transient analysis (a tran command may be run interactively before the last reset, alternately), and the current plot must be from this transient analysis.

This command is needed because WinSpice3 doesn't output the results from a transient analysis in the same manner that SPICE2 did. WinSpice3 uses a dynamic timestep which means that the timescale is non-monotonic. SPICE2 internally does the same, but it does an automatic linearization – the non-linearized result is not normally available.

6.9.24 Listing: Print a listing of the current circuit

General Form

listing [logical] [physical] [deck] [expand]

If the logical argument is given, the listing is with all continuation lines collapsed into one line, and if the physical argument is given the lines are printed out as they were found in the file. The default is logical. A deck listing is just like the physical listing, except without the line numbers it recreates the input file verbatim (except that it does not preserve case). If the word expand is present, the circuit is printed with all subcircuits expanded.

6.9.25 Load: Load rawfile data

General Form

load [filename] ...

Loads either binary or ASCII format rawfile data from the files named. The default filename is rawspice.raw, or the argument to the -r flag if there was one.

6.9.26 Noise: Perform a noise analysis

General Form

noise V(OUTPUT <,REF>) SRC (DEC | LIN | OCT) PTS FSTART FSTOP

+ <PTS_PER_SUMMARY>

See section 5.3.4 for details of this command.

6.9.27 Op: Perform an operating point analysis

General Form

op

Do an operating point analysis. See section 5.3.5 of this manual for more details.

6.9.28 Plot: Plot values on the display

General Form

plot exprs [ylimit ylo yhi] [xlimit xlo xhi] [xindices xilo xihi]

[xcompress comp] [xdelta xdel] [ydelta ydel] [xlog] [ylog] [loglog]

[vs xname] [xlabel word] [ylabel word] [title word] [samep]

[linear] [linplot | combplot | pointplot]

Plot the given exprs on the screen (if you are on a graphics terminal). The xlimit and ylimit arguments determine the high and low x- and y-limits of the axes, respectively. The xindices arguments determine what range of points are to be plotted - everything between the xilo'th point and the xihi'th point is plotted. The xcompress argument specifies that only one out of every comp points should be plotted. If an xdelta or a ydelta parameter is present, it specifies the spacing between grid lines on the X- and Y-axis. These parameter names may be abbreviated to xl, yl, xind, xcomp, xdel, and ydel respectively.

The xname argument is an expression to use as the scale on the x-axis. If xlog or ylog are present then the X or Y scale, respectively, is logarithmic (loglog is the same as specifying both). The xlabel and ylabel arguments cause the specified labels to be used for the X and Y axes, respectively.

If samep is given, the values of the other parameters (other than xname) from the previous plot, hardcopy, or asciiplot command is used unless re-defined on the command line.

The title argument is used in the place of the plot name at the bottom of the graph.

The linear keyword is used to override a default log-scale plot (as in the output for an AC analysis).

Different styles of plot can be selected via the linplot, pointplot and combplot keywords. Specifying linplot gives a plot where each point is connected to the next by a line. If pointplot is used, the points are represented by a character with no joining lines. The combplot is drawn with a vertical line from each point to the X-axis. The plot type can also be specified via the plotstyle variable e.g. 'set plotstyle=combplot'. The if a plot style is given in the plot command, this overrides the variable.

Finally, the keyword polar to generate a polar plot. To produce a smith plot, use the keyword smith. Note that the data is transformed, so for smith plots you will see the data transformed by the function (x-1)/(x+1). To produce a polar plot with a smith grid but without performing the smith transform, use the keyword smithgrid.

If maxplots is non zero, as each new plot window is displayed,older ones may be automatically closed. See section 6.2.

6.9.29 Print: Print values

General Form

print [col] [line] expr ...

Prints the vector described by the expression expr. If the col argument is present, print the vectors named side by side. If line is given, the vectors are printed horizontally. col is the default, unless all the vectors named have a length of one, in which case line is the default. The options width, length, and nobreak are effective for this command (see asciiplot). If the expression is all, all of the vectors available are printed. Thus print col all > file prints everything in the file in SPICE2 format. The scale vector (time, frequency) is always in the first column unless the variable noprintscale is true.

6.9.30 Pz: Perform a Pole-Zero Analysis

General Form

pz NODE1 NODE2 NODE3 NODE4 CUR POL

pz NODE1 NODE2 NODE3 NODE4 CUR ZER

pz NODE1 NODE2 NODE3 NODE4 CUR PZ

pz NODE1 NODE2 NODE3 NODE4 VOL POL

pz NODE1 NODE2 NODE3 NODE4 VOL ZER

pz NODE1 NODE2 NODE3 NODE4 VOL PZ

Examples:

pz 1 0 3 0 CUR POL

pz 2 3 5 0 VOL ZER

pz 4 1 4 1 CUR PZ

CUR stands for a transfer function of the type (output voltage)/(input current) while VOL stands for a transfer function of the type (output voltage)/(input voltage). POL stands for pole analysis only, ZER for zero analysis only and PZ for both. This feature is provided mainly because if there is a non-convergence in finding poles or zeros, then, at least the other can be found. Finally, NODE1 and NODE2 are the two input nodes and NODE3 and NODE4 are the two output nodes. Thus, there is complete freedom regarding the output and input ports and the type of transfer function.

6.9.31 Quit: Leave WinSpice3

General Form

quit

Quit WinSpice3.

6.9.32 Rawfile: Send further results directly to a rawfile

General Form

rawfile [rawfile][OFF]

Send the output of subsequent analyses directly to a file. ‘rawfile off’ restores default operation.

6.9.33 Reset: Reset an analysis

General Form

reset

Throw out any intermediate data in the circuit (e.g., after a breakpoint or after one or more analyses have been done already), and re-parse the input file. The circuit can then be re-run from it's initial state, overriding the affect of any set or alter commands. In SPICE-3e and earlier versions this was done automatically by the run command.

6.9.34 Reshape: Alter the dimensionality or dimensions of a vector

General Form

reshape vector vector ...

or

reshape vector vector ... [dimension, dimension, ...]

or

reshape vector vector ... [dimension][dimension] ...

This command changes the dimensions of a vector or a set of vectors. The final dimension may be left off and it will be filled in automatically. If no dimensions are specified, then the dimensions of the first vector are copied to the other vectors. An error message of the form 'dimensions of x were inconsistent' can be ignored.

6.9.35 Resume: Continue a simulation after a stop

General Form

resume

Resume a simulation after a stop or interruption (control-C).

6.9.36 Run: Run analysis from the input file

General Form

run [rawfile]

Run the simulation loaded by a previous ‘source’ command. If there were any of the control lines .ac, .op, .tran, or .dc, they are executed.

The output is put in rawfile if it was given, in addition to being available interactively.

6.9.37 Rusage: Resource usage

General Form

rusage [resource ...]

Print resource usage statistics. If any resources are given, just print the usage of that resource. Most resources require that a circuit be loaded.

Currently valid resources are:-

Item
Description

elapsed
The amount of time elapsed since the last rusage elapsed call.

faults
Number of page faults and context switches (BSD only).

space
Data space used.

time
CPU time used so far.

temp
Operating temperature.

tnom
Temperature at which device parameters were measured.

equations
Circuit Equations

time
Total Analysis Time

totiter
Total iterations

accept
Accepted timepoints

rejected
Rejected timepoints

loadtime
Time spent loading the circuit matrix and RHS.

reordertime
Matrix reordering time

lutime
L-U decomposition time

solvetime
Matrix solve time

trantime
Transient analysis time

tranpoints
Transient timepoints

traniter
Transient iterations

trancuriters
Transient iterations for the last time point*

tranlutime
Transient L-U decomposition time

transolvetime
Transient matrix solve time

everything
All of the above.

 * listed incorrectly as "Transient iterations per point".

6.9.38 Save: Save a set of output vectors

General Form

save [all | vector vector ...]

Examples:

save i(vin) input output

save @m1[id]

Save a set of output vectors, discarding the rest. If a vector has been mentioned in a save command, it appears in the working plot after a run has completed, or in the rawfile if SPICE is run in batch mode. If a vector is traced or plotted (see below) it is also saved.

For backward compatibility, if there are no save commands given, all outputs are saved.

When the keyword ‘all’ appears in the save command, all default values (node voltages and voltage source currents) are saved in addition to any other values listed.

6.9.39 Sens: Run a sensitivity analysis

General Form

sens output_variable

sens output_variable ac (DEC | OCT | LIN) N Fstart Fstop

Perform a Sensitivity analysis. output_variable is either a node voltage (ex. "v(1)" or "v(A,out)") or a current through a voltage source (ex. "i(vtest)"). The first form calculates DC sensitivities, the second form calculates AC sensitivities. The output values are in dimensions of change in output per unit change of input (as opposed to percent change in output or per percent change of input).

6.9.40 Set: Set the value of a variable

General Form

set [word]

set [word = value] ...

Set the value of word to be value, if it is present. You can set any word to be any value, numeric or string. If no value is given then the value is the boolean 'true'.

The value of word may be inserted into a command by writing $word. If a variable is set to a list of values that are enclosed in parentheses (which must be separated from their values by white space), the value of the variable is the list.

The variables used by WinSpice3 are listed in section 6.2.

6.9.41 Setcirc: Change the current circuit

General Form

setcirc [circuit name]

The current circuit is the one that is used for the simulation commands below. When a circuit is loaded with the source command (see below) it becomes the current circuit.

WinSpice3 maintains a list of circuits which have been loaded into the system. The length of this list is defined by the value of the environment variable maxcircuits which, to conserve memory, is set to 1 by default.

6.9.42 Setplot: Switch the current set of vectors

General Form

setplot [plotname]

Set the current plot to the plot with the given name, or if no name is given, prompt the user with a menu. (Note that the plots are named as they are loaded, with names like tran1 or op2. These names are shown by the setplot and display commands and are used by diff, below.) If the "New plot" item is selected, the current plot becomes one with no vectors defined.

Note that here the word "plot" refers to a group of vectors that are the result of one SPICE run. When more than one file is loaded in, or more than one plot is present in one file, WinSpice3 keeps them separate and only shows you the vectors in the current plot.

6.9.43 Setscale: Set the scale for a plot

General Form

setscale [vector]

Changes the scale vector for the current plot. If ‘vector’ is not given, this comment displays the scale for the plot.

6.9.44 Settype: Set the type of a vector

General Form

settype type vector ...

Change the type of the named vectors to type. The available type names are as follows:-

type
Units shown on plots

notype
None

time
“S”

frequency
“Hz”

voltage
"V"

current
"A"

onoise-spectrum
"(V or A)^2/Hz"

onoise-integrated
"V or A"

inoise-spectrum
"(V or A)^2/Hz"

inoise-integrated
"V or A"

output-noise
None

input-noise
None

pole
None

Zero
None

s-param
None

impedance
"Ohms"

admittance
"Mhos"

power
"W"

phase
"Degrees" or “Radians”

decibel
"dB"

6.9.45 Shell: Call the command interpreter

General Form

shell [command]

Call the operating system's command interpreter; execute the specified command or call for interactive use.

6.9.46 Shift: Alter a list variable

General Form

shift [varname] [number]

If varname is the name of a list variable, it is shifted to the left by number elements (i.e., the number leftmost elements are removed). The default varname is argv, and the default number is 1.

6.9.47 Show: List device state

General Form

show

show devs : params

show devs : params ; devs : params

show dev dev dev : param param param , dev dev : param param

show t : param param param, t : param param

The show command prints out tables summarising the operating condition of selected devices (much like the SPICE2 operation point summary).

· If device is missing, a default set of devices are listed.

· If device is a single letter, devices of that type are listed.

· If device is a subcircuit name (beginning and ending in ":") only devices in that subcircuit are shown (end the name in a double-":" to get devices within sub-subcircuits recursively).

The second and third forms may be combined ("letter:subcircuit:") or "letter:subcircuit::") to select a specific type of device from a subcircuit. A device's full name may be specified to list only that device. Finally, devices may be selected by model by using the form "#modelname" or ":subcircuit#modelname" or "letter:subcircuit#modelname".

If no parameters are specified, the values for a standard set of parameters are listed. If the list of parameters contains a "+", the default set of parameters is listed along with any other specified parameters.

For both devices and parameters, the word "all" has the obvious meaning. For example

show all : all

shows all output parameters in all devices.

Note: there must be spaces separating the ":" that divides the device list from the parameter list.

6.9.48 Showmod: List model parameter values

General Form

showmod models [:parameters] , ...

The showmod command operates like the show command (above) but prints out model parameter values. The applicable forms for models are a single letter specifying the device type letter, "letter:subckt:", "modelname", ":subckt:modelname", or "letter:subcircuit:modelname".

6.9.49 Source: Read a WinSpice3 input file

General Form

source file

For WinSpice3: Read the WinSpice3 input file.

WinSpice3 commands may be included in the file, and must be enclosed between the lines .control and .endc. These commands are executed immediately after the circuit is loaded, so a control line of ac ... works the same as the corresponding .ac card. The first line in any input file is considered a title line and not parsed but kept as the name of the circuit. The exception to this rule is the file .spiceinit. Thus, a WinSpice3 command script must begin with a blank line and then with a .control line.

Also, any line beginning with the characters *# is considered a control line. This makes it possible to embed commands in WinSpice3 input files that are ignored by SPICE2.

Lines beginning with the character * are considered comments and ignored.

6.9.50 Spec: Generate a Fourier transform vector

General Form

spec startf stopf stepf vector

Calculates a new vector containing the Fourier transform of the input vector. This vector should be the output of a transient analysis.

This command takes note of the following shell variables which can be set using the ‘set’ command (see section 6.9.40):-

Variable
Type
Description

specwindow
String
Specifies the windowing function. Possible values are:-

none
hanning or cosine
rectangular
hamming
triangle or bartlet
blackman
gaussian

If this variable is not defined, the hanning window is used.

specwindoworder
Number
Specifies the window order for the gaussian window only.

Note that the time axis of the input vector should be linearised first by using the ‘linearize’ command (see section 6.9.23) because WinSpice3 does not produce a linear time axis for transient analyses. After using the ‘spec’ command, the spectrum can be displayed by plotting the magnitude of the resultant vector.

For example, after a transient analysis resulting in transient vector v(1), the spectrum can be plotted with the following commands:-

linearize
spec 10 100000 5000 v(1)
plot mag(v(1))

6.9.51 Status: Display breakpoint and trace information

General Form

status

Display all of the traces, iplots and breakpoints currently in effect.

6.9.52 Step: Run a fixed number of time points

General Form

step [number]

Iterate number times, or once, and then stop.

6.9.53 Stop: Set a breakpoint

General Form

stop [after n] [when value cond value] ...

Set a breakpoint. The argument after n means stop after n iteration number n, and the argument when value cond value means stop when the first value is in the given relation with the second value, the possible relations being

eq

or

=

equal to

ne

or

<>

not equal to

gt

or

>

greater than

lt

or

<

less than

ge

or

>=

greater than or equal to

le

or

<=

less than or equal to

I/O redirection is disabled for the stop command, since the relational operations conflict with it (it doesn't produce any output anyway). The values above may be node names in the running circuit, or real values. If more than one condition is given, e.g. stop after 4 when v(1) > 4 when v(2) < 2, the conjunction of the conditions is implied.

6.9.54 Strcmp: Compare strings

General Form

strcmp res var1 var2

Example

strcmp i $resp new

if $i = 0

 set curplot = new

 goto bottom

end

Compare two string variables var1 and var2 for equality and set variable res as follows:-

0
if they are equal
–1
if var1 < var2
+1
if var1 > var2

6.9.55 Tf: Run a Transfer Function analysis

General Form

tf output_node input_source

The tf command performs a transfer function analysis, returning the transfer function (output/input), output resistance, and input resistance between the given output node and the given input source. The analysis assumes a small-signal DC (slowly varying) input.

6.9.56 Trace: Trace nodes

General Form

trace [node ...]

For every step of an analysis, the value of the node is printed. Several traces may be active at once. Tracing is not applicable for all analyses. To remove a trace, use the delete command.

See the iplot command (see section 6.9.21) for a visual form of trace.

6.9.57 Tran: Perform a transient analysis

General Form

tran Tstep Tstop [Tstart [Tmax]] [UIC]

Perform a transient analysis. See section 5.3.9 of this manual for more details.

6.9.58 Transpose: Swap the elements in a multi-dimensional data set

General Form

transpose vector vector ...

Example

transpose i(vdd) v(drain)

This command transposes a multidimensional vector. No analysis in WinSpice3 produces multidimensional vectors, although the DC transfer curve may be run with two varying sources. You must use the "reshape" command to reform the one-dimensional vectors into two dimensional vectors. In addition, the default scale is incorrect for plotting. You must plot versus the vector corresponding to the second source, but you must also refer only to the first segment of this second source vector. For example (circuit to produce the transfer characteristic of a MOS transistor):

spice3 > dc vgg 0 5 1 vdd 0 5 1

spice3 > plot i(vdd)

spice3 > reshape all [6,6]

spice3 > transpose i(vdd) v(drain)

spice3 > plot i(vdd) vs v(drain)[0]

6.9.59 Tutorial: Display hypertext help

General Form

tutorial [subject]

Display hierarchical help information from an on-line manual.

6.9.60 Unalias: Retract an alias

General Form

unalias [word ...]

Removes any aliases present for the words.

6.9.61 Undefine: Retract a definition

General Form

undefine function

Definitions for the named user-defined functions are deleted.

6.9.62 Unlet: Delete vectors

General Form

unlet varname ...

Delete one or more vectors.

6.9.63 Unset: Clear a variable

General Form

unset [word ...]

Clear the value of the specified variable(s) (word).

6.9.64 Version: Print the version of WinSpice

General Form

version [version id]

Print out the version of WinSpice that is running. If there are arguments, it checks to make sure that the arguments match the current version of WinSpice.

6.9.65 Where: Identify troublesome node or device

General Form

where

When performing a transient or operating point analysis, the name of the last node or device to cause non-convergence is saved. The where command prints out this information so that you can examine the circuit and either correct the problem or make a bug report. You may do this either in the middle of a run or after the simulator has given up on the analysis. For transient simulation, the iplot command can be used to monitor the progress of the analysis. When the analysis slows down severely or hangs, interrupt the simulator (with control-C) and issue the where command. Note that only one node or device is printed; there may be problems with more than one node.

6.9.66 Write: Write data to a file

General Form

write [file [exprs]]

Writes out the expressions to file.

First vectors are grouped together by plots, and written out as such (i.e. if the expression list contained three vectors from one plot and two from another, then two plots are written, one with three vectors and one with two). Additionally, if the scale for a vector isn't present, it is automatically written out as well.

The default format is ASCII, but this can be changed with the set filetype command. The default filename is rawspice.raw, or the argument to the -r flag on the command line, if there was one, and the default expression list is all.

If file is given and it has the file extension ‘.csv’, the file will be written as ASCII in comma separated value format.

6.10 Miscellaneous

If there are subcircuits in the input file, WinSpice3 expands instances of them. A subcircuit is delimited by the cards .subckt and .ends, or whatever the value of the variables substart and subend is, respectively. An instance of a subcircuit is created by specifying a device with type 'x' - the device line is written

xname node1 node2 ... subcktname

where the nodes are the node names that replace the formal parameters on the .subckt line. All nodes that are not formal parameters are prepended with the name given to the instance and a ':', as are the names of the devices in the subcircuit. If there are several nested subcircuits, node and device names look like subckt1:subckt2:...:name. If the variable subinvoke is set, then it is used as the prefix that specifies instances of subcircuits, instead of 'x'.

WinSpice3 occasionally checks to see if it is getting close to running out of space, and warns the user if this is the case.

6.11 Bugs

When defining aliases like

alias pdb plot db('!:1' - '!:2')

you must be careful to quote the argument list substitutions in this manner. If you quote the whole argument it might not work properly.

In a user-defined function, the arguments cannot be part of a name that uses the plot.vec syntax. For example:

define check(v(1)) cos(tran1.v(1))

does not work.

If you type plot all all, or otherwise use a wildcard reference for one plot twice in a command, the effect is unpredictable.

The asciiplot command doesn't deal with log scales or the delta keywords.

WinSpice3 recognises all the notations used in SPICE2 .plot cards, and translates vp(1) into ph(v(1)), and so forth. However, if there are spaces in these names it won't work. Hence v(1, 2) and (-.5, .5) aren't recognised.

BJTs can have either 3 or 4 nodes, which makes it difficult for the subcircuit expansion routines to decide what to rename. If the fourth parameter has been declared as a model name, then it is assumed that there are 3 nodes, otherwise it is considered a node. To disable this, you can set the variable nobjthack which forces BJTs to have 4 nodes (for the purposes of subcircuit expansion, at least).

The @name[param] notation might not work with trace, iplot, etc. yet.

The first line of a command file (except for the .spiceinit file) should be a comment, otherwise WinSpice3 may create an empty circuit.

Files specified on the command line are read before .spiceinit is read.

7 CONVERGENCE

Both DC and transient solutions are obtained by an iterative process, which is terminated when both of the following conditions hold:

· The non-linear branch currents converge to within a tolerance of 0.1% or 1 picoamp (1.0e-12 Amp), whichever is larger.

· The node voltages converge to within a tolerance of 0.1% or 1 microvolt (1.0e-6 Volt), whichever is larger.

Although the algorithm used in SPICE has been found to be very reliable, in some cases it fails to converge to a solution. When this failure occurs, the program terminates the job.

Failure to converge in DC analysis is usually due to an error in specifying circuit connections, element values, or model parameter values. Regenerative switching circuits or circuits with positive feedback probably will not converge in the DC analysis unless the OFF option is used for some of the devices in the feedback path, or the .NODESET control line is used to force the circuit to converge to the desired state.

7.1 Solving Convergence Problems

The following techniques on solving convergence problems are taken from various sources including:

1.
Meares, L.G., Hymowitz C.E. "Simulating With Spice", Intusoft, 1988

2.
Muller, K.H. "A SPICE Cookbook", Intusoft, 1990

3.
Meares, L.G., Hymowitz C.E. "Spice Applications Handbook", Intusoft, 1990

4.
Intusoft Newsletters, various dates from 1986 to present.

5.
Quarles, T. L., "Analysis of Performance and Convergence Issues for Circuit Simulation", U.C.Berkeley, ERL Memo M89/42, April 1989.

7.2 What is Convergence? (or Non-Convergence!)

The answer to a non-linear problem, such as those in the SPICE DC and Transient analyses, is found via an iterative solution. For example, WinSpice3 makes an initial guess at the circuit's node voltages and then, using the circuit conductances, finds the mesh currents. The currents are then used to recalculate the node voltages and the cycle begins again. This continues until all of the node voltages settle to within certain tolerance limits, which can be altered using various .OPTIONS parameters such as RELTOL, VNTOL, and ABSTOL.

If the node voltages do not settle down within a certain number of iterations, the DC analysis will issue an error message, such as "No convergence in DC analysis", "PIVTOL Error", "Singular Matrix", or "Gmin/Source Stepping Failed". SPICE will then terminate the run because both the AC and transient analyses require an initial stable operating point in order to start. During the transient analysis, this iterative process is repeated for each individual time step. If the node voltages do not settle down, the time step is reduced and SPICE tries again to determine the node voltages. If the time step is reduced beyond a certain fraction of the total analysis time, the transient analysis will issue an error message ("Time step too small") and the analysis will be halted.

Solutions to the DC analysis may fail to converge because of incorrect initial voltage guesses, model discontinuities, unstable/bistable operation, or unrealistic circuit impedances. Transient analysis failures are usually due to model discontinuities or unrealistic circuit, source, or parasitic modelling. The various solutions to convergence problems fall under one of two types. Some are simply Band-Aids. That is, they merely try to fix the symptom by adjusting the simulator options. While other solutions actually effect the real cause of the convergence problems.

The following techniques can be used to solve 90-95% of all convergence problems. When a convergence problem is encountered you should start at solution 1 and continue on with the subsequent fixes until convergence is achieved. The order of the solutions is set-up so those lower number fixes can be left in the simulation as additional fixes are added. The order is also set-up so that the initial fixes will be of the most benefit. The user should note that fixes involving simulation options might simply mask the underlying circuit instabilities. Invariably, the user will find that once the circuit is properly modelled, many of the "options" fixes will no longer be required!

7.3 SPICE3 - New Convergence Algorithms

In addition to automatically invoking the traditional source stepping algorithm, SPICE3 contains a new superior algorithm called "Gmin Stepping". This algorithm uses a constant minimal junction conductance to keep the sparse matrix well conditioned and a separate variable conductance to ground at each node as a DC convergence aid. These variable conductances make the solution converge faster, they are then reduced and the solution re-computed. Eventually, the solution is found with a sufficiently small conductance. Finally, the conductance is removed entirely to obtain a final solution. This technique has been found to work very well and SPICE3 uses it by default when convergence problems occur. The suggestion, made in a number of textbooks, of reducing the .OPTIONS GMIN value in order to solve convergence problems is performed automatically by this new algorithm.

7.4 Non-Convergence Error Messages/Indications

DC Analysis
(.OP, small signal bias solution before the AC analysis or Initial transient solution before the Transient analysis) - "No Convergence in DC analysis", "PIVTOL Error". WinSpice3 programs will issue "Gmin/Source Stepping Failed" or "Singular Matrix" messages.

DC SWEEP Analysis (.DC)
"No Convergence in DC analysis at Step = xxx"

Transient (.TRAN)
"Internal timestep too small"

IMPORTANT NOTE: The suggestions listed below are applicable to most SPICE programs, especially if they are Berkeley SPICE compatible.

7.5 Convergence Solutions

7.5.1 DC Convergence Solutions

1. Check the circuit topology and connectivity.

.OPTIONS NODE LIST will provide a nice summary print out of the nodal connections.

Common mistakes:

Make sure all of the circuit connections are valid. Check for incorrect node numbering or dangling nodes

Make sure you didn't use the letter O instead of a zero (0)

Check for syntax mistakes. Make sure you used the correct SPICE units (MEG instead of M for 1E6)

Check for a DC path to ground from every node

Ensure that there are two connections at each node

No loops of inductors or voltage sources

No series capacitors or current sources

Have ground (node 0) somewhere in the circuit. Be careful when using floating grounds; a large valued resistor connected from the floating point to ground may be needed

Check to see that voltage/current generators are at their proper values

Check to see that dependent source gains are correct

Check for realistic model parameters; especially if you copied the model into the netlist by hand

Check to see that all resistors have a value. In WinSpice3 resistors without values are given a default of 1KOhm

2. Increase ITL1 to 300 in the .OPTIONS statement.

Example: .OPTIONS ITL1=300

Increases the number of DC iterations WinSpice3 will go through before giving up. Further increases in ITL1, in all but the most complex circuits, will not usually yield convergence.

3. Set ITL6 =100 in the .OPTIONS statement.

Example: .OPTIONS ITL6=100

Invokes the source stepping algorithm. 100 are the number of steps used. This solution is unnecessary for WinSpice3 users as source stepping is automatically invoked after both the default method and the new Gmin stepping algorithms have been tried. Note for SPICE2 users, this is an undocumented Berkeley SPICE2 option.

4. Add .NODESETs

Example:

NODESET V(6)=0

Check the node voltage table in the output file. Add .NODESETS statements to nodes that SPICE says have unrealistic or way out voltages. Use a .NODESET of 0V if you do not have a better estimation of the proper DC voltage.

5. Add resistors and use the OFF keyword

Example:

D1 1 2 DMOD OFF

RD1 1 2 100MEG

Add resistors across diodes to simulate leakage and resistors across MOSFET drain to source connections to simulate realistic channel impedances. Add ohmic resistances (RC, RB, and RE) to transistors. Reduce Gmin an order of magnitude in the .OPTIONS statement. Add the OFF keyword to semiconductors (especially diodes) that may be causing convergence problems. The OFF keyword tells WinSpice3 to first solve the operating point with the device off. Then, the device is turned on and the previously found operating point is used as a starting condition for the final operating point.

6. Change DC power supplies into PULSE statements.

Example:

From

VCC 1 0 15 DC

To

VCC 1 0 PULSE 0 15

This allows the user to selectively turn on certain power supplies just like in real life. This is sometimes known as the "Pseudo-Transient" method. Use a reasonable rise time in the PULSE statement to simulate realistic turn on, for example,

V1 1 0 PULSE 0 5 0 1U would provide a 5 volt supply with a turn on of 1 microsecond. The first value after the 5 voltage (in this case 0) is the turn-on delay that can be used to let the circuit settle down before turning on the power supply.

7. UIC

Example:

.TRAN .1N 100N UIC

Insert the UIC keyword in the .TRAN statement. UIC means Use Initial Conditions. UIC will cause WinSpice3 to completely by-pass the DC analysis. You should add any applicable .IC and IC= initial conditions statements to assist in the initial stages of the transient analysis. Note: this solution is not viable when you want to perform an AC analysis because the AC analysis must be proceeded by an operating point.

AC Analysis Note: Solutions 5 and 6 should be used as a last resort because they will not produce a valid DC operating point for the circuit (All supplies turned ON). However, if your aim is to get to the transient analysis, then solutions 5 and 6 may help you get there and possibly uncover the hidden problems plaguing the DC analysis along the way.

7.5.2 DC Sweep Convergence Solutions

1. Check circuit topology and connectivity

This is the same as 0 in DC analysis.

Set ITL2=100 in the .OPTIONS statement

Example:

.OPTIONS ITL2=100

Increases the number of DC iterations WinSpice3 will go through before giving up.

2. Make the steps in the .DC sweep larger or smaller

Example: From

.DC VCC 0 1 .1

To

.DC VCC 0 1 .01

Discontinuities in the SPICE models can cause convergence problems. Larger steps can help to bypass the discontinuities while smaller steps can help WinSpice3 find the intermediate answers that will be used to find non-converging point.

3. Do not use the DC sweep analysis

Example:

From

.DC VCC 0 5 .1

VCC 1 0

To

.TRAN .01 1

VCC 1 0 PULSE 0 5 0 1

In many cases it is more effective and efficient to use the transient analysis, by ramping the appropriate voltage and/or current sources, than to use the .DC analysis.

7.5.3 Transient Convergence Solutions

1. Check circuit topology and connectivity

This is similar to 0 in DC analysis.

2. Set RELTOL=.01 in the .OPTIONS statement

Example:

.OPTIONS RELTOL=.01

This option is actually encouraged for most simulations as reducing the RELTOL will speed the simulation up greatly (10-50%) with only a very minor loss in accuracy. A useful recommendation is to set RELTOL to 0.01 for initial simulations and then reset it when you have the simulation going the way you like it and a more accurate answer is required.

3. Reduce the accuracy of ABSTOL/VNTOL if current/voltage levels allow

Example:

.OPTIONS ABSTOL=1N VNTOL=1M

ABSTOL/VNTOL can be set to about 8 orders of magnitude below the average voltage/current. Defaults are ABSTOL=1PA and VNTOL=1UV.

4. Set ITL4=100 in the .OPTIONS statement

Example:

.OPTIONS ITL4=100

Increases the number of transient iterations at each time point that WinSpice3 will go through before giving up.

5. Realistically Model Your Circuit; add parasitics, especially stray/junction capacitance

The idea here is to smooth any strong nonlinearities or discontinuities. Adding capacitance to various nodes and making sure that all semiconductor junctions have capacitance can do this.

Other tips include:

Use RC snubbers around diodes

Capacitance for all semiconductor junctions (3PF for diodes, 5PF for BJTs if no specific value is known)

Add realistic circuit and element parasitics

Find a subcircuit representation if the model doesn't fit the device behaviour, especially for RF and power devices like RF BJTs and power MOSFETs.

Many vendors cheat and try to "force fit" the SPICE .MODEL statement to represent a device's behaviour. This is a sure sign that the vendor has skimped on quality in favour of quantity. Primitive .MODEL statements CAN NOT be used to model most devices above 200MHz because of the effect of package parasitics. And .MODEL statements CAN NOT be used to model most power devices because of extreme non-linear behaviour. In particular, if your vendor uses a .MODEL statement to model a power MOSFET, throw away the model. It’s almost certainly useless for transient analysis.

6. Reduce the rise/fall times of the PULSE sources.

Example:

From

VCC 1 0 PULSE 0 1 0 0 0

To

VCC 1 0 PULSE 0 1 0 1U 1U

Again, we are trying to smooth strong nonlinearities. The pulse times should be realistic, not ideal. If no rise or fall times are given, or if 0 is specified, the rise and fall time will be set equal to the TSTEP value in the .TRAN statement.

7. Change the integration to Gear

Example:

.OPTIONS METHOD=GEAR

Gear should be coupled with a reduction in the RELTOL value. Gear integration, with a reduction in RELTOL, tends to produce answers in the direction of a more stable numerical solution, while trapezoidal integration tends to produce a less stable solution. Gear integration often produces superior results for power circuitry simulations due to the fact that high frequency ringing and long simulation periods are often encountered. WinSpice3 includes both Trapezoidal and Gear integration.

Gear Integration is a very valuable, especially for Power supply designers.

7.5.4 Special Cases

MOSFETs - Check the connectivity. Connecting two gates together, but to nothing else will give a PIVTOL/Singular matrix error. Check Model Level. SPICE2 does not behave properly when MOSFETs of different Levels are used in the same simulation.

Long Transient Runs, ITL5=0. Don't forget to change the ITL5 .OPTIONS parameter (# of transient iterations) to 0, which means run until completion no matter how many iterations it takes.

7.5.5 WinSpice3 Convergence Helpers

WinSpice3 has several other options available to help convergence.

1. Gminsteps (DC Convergence)

Example: .OPTIONS GMINSTEPS=200

The Gminsteps option adjusts the number of increments that Gmin will be stepped during the DC analysis. Gmin stepping is invoked automatically when there is a convergence problem. Gmin stepping is a new algorithm in WinSpice3 that greatly improves DC convergence.

2. The 'where' function (DC/Transient Convergence)

Example:

.control

 where

.endc

The new ICL (Interactive Command Language) in WinSpice3 allows the user to ask for specific information about where a convergence problem is taking place. In some cases WinSpice3 does not report the node or device that is failing to converge. The "where" function, is normally added to the control block after the simulation fails. When the simulation is run again, the problem area will be reported.

3. ALTINIT function (Transient Convergence)

Example:

.OPTIONS ALTINIT=1

Setting ALTINIT to one causes the default algorithm used when the UIC (use initial condition) keyword is issued in the .TRAN to be bypassed in favour of a second more lenient algorithm. Normally the second algorithm is automatically invoked when the default method fails.

4. RSHUNT option

Example:

.OPTION RSHUNT=1e9

If a circuit fails to converge, or simulates very slowly, try using ‘.option rshunt=1e9’ to the circuit file. This guarantees that all voltage nodes have a path to ground and avoids one cause of non-convergence.

8 BIBLIOGRAPHY

[1] A. Vladimirescu and S. Liu, The Simulation of MOS Integrated Circuits Using SPICE2
ERL Memo No. ERL M80/7, Electronics Research Laboratory
University of California, Berkeley, October 1980

[2] T. Sakurai and A. R. Newton, A Simple MOSFET Model for Circuit Analysis and its application to CMOS gate delay analysis and series-connected MOSFET Structure
ERL Memo No. ERL M90/19, Electronics Research Laboratory,
University of California, Berkeley, March 1990

[3] B. J. Sheu, D. L. Scharfetter, and P. K. Ko, SPICE2 Implementation of BSIM
ERL Memo No. ERL M85/42, Electronics Research Laboratory
University of California, Berkeley, May 1985

[4] J. R. Pierret, A MOS Parameter Extraction Program for the BSIM Model
ERL Memo Nos. ERL M84/99 and M84/100, Electronics Research Laboratory
University of California, Berkeley, November 1984

[5] Min-Chie Jeng, Design and Modeling of Deep-Submicrometer MOSFETSs
ERL Memo Nos. ERL M90/90, Electronics Research Laboratory
University of California, Berkeley, October 1990

[6] Soyeon Park, Analysis and SPICE implementation of High Temperature Effects on MOSFET,
Master's thesis, University of California, Berkeley, December 1986.

[7] Clement Szeto, Simulator of Temperature Effects in MOSFETs (STEIM),
Master's thesis, University of California, Berkeley, May 1988.

[8] J.S. Roychowdhury and D.O. Pederson, Efficient Transient Simulation of Lossy Interconnect,
Proc. of the 28th ACM/IEEE Design Automation Conference, June 17-21 1991, San Francisco

[9] A. E. Parker and D. J. Skellern, An Improved FET Model for Computer Simulators,
IEEE Trans CAD, vol. 9, no. 5, pp. 551-553, May 1990.

[10] R. Saleh and A. Yang, Editors, Simulation and Modeling,
IEEE Circuits and Devices, vol. 8, no. 3, pp. 7-8 and 49, May 1992

[11] H.Statz et al., GaAs FET Device and Circuit Simulation in SPICE,
IEEE Transactions on Electron Devices, V34, Number 2, February, 1987 pp160-169.

9 APPENDIX A: EXAMPLE CIRCUITS

9.1 Circuit 1: Differential Pair

The following deck determines the DC operating point of a simple differential pair. In addition, the ac small-signal response is computed over the frequency range 1Hz to 100MEGHz.

SIMPLE DIFFERENTIAL PAIR

VCC 7 0 12

VEE 8 0 -12

VIN 1 0 AC 1

RS1 1 2 1K

RS2 6 0 1K

Q1 3 2 4 MOD1

Q2 5 6 4 MOD1

RC1 7 3 10K

RC2 7 5 10K

RE 4 8 10K

.MODEL MOD1 NPN BF=50 VAF=50 IS=1.E-12 RB=100 CJC=.5PF TF=.6NS

.TF V(5) VIN

.AC DEC 10 1 100MEG

.END

9.2 Circuit 2: MOSFET Characterisation

The following deck computes the output characteristics of a MOSFET device over the range 0-10V for VDS and 0-5V for VGS.

MOS OUTPUT CHARACTERISTICS

.OPTIONS NODE NOPAGE

VDS 3 0

VGS 2 0

M1 1 2 0 0 MOD1 L=4U W=6U AD=10P AS=10P

* VIDS MEASURES ID, WE COULD HAVE USED VDS, BUT ID WOULD BE NEGATIVE

VIDS 3 1

.MODEL MOD1 NMOS VTO=-2 NSUB=1.0E15 UO=550

.DC VDS 0 10 .5 VGS 0 5 1

.END

9.3 Circuit 3: RTL Inverter

The following deck determines the DC transfer curve and the transient pulse response of a simple RTL inverter. The input is a pulse from 0 to 5 Volts with delay, rise, and fall times of 2ns and a pulse width of 30ns. The transient interval is 0 to 100ns, with printing to be done every nanosecond.

SIMPLE RTL INVERTER

VCC 4 0 5

VIN 1 0 PULSE 0 5 2NS 2NS 2NS 30NS

RB 1 2 10K

Q1 3 2 0 Q1

RC 3 4 1K

.MODEL Q1 NPN BF 20 RB 100 TF .1NS CJC 2PF

.DC VIN 0 5 0.1

.TRAN 1NS 100NS

.END

9.4 Circuit 4: Four-Bit Binary Adder

The following deck simulates a four-bit binary adder, using several subcircuits to describe various pieces of the overall circuit.

ADDER - 4 BIT ALL-NAND-GATE BINARY ADDER

*** SUBCIRCUIT DEFINITIONS

.SUBCKT NAND 1 2 3 4

* NODES: INPUT(2), OUTPUT, VCC

Q1 9 5 1 QMOD

D1CLAMP 0 1 DMOD

Q2 9 5 2 QMOD

D2CLAMP 0 2 DMOD

RB 4 5 4K

R1 4 6 1.6K

Q3 6 9 8 QMOD

R2 8 0 1K

RC 4 7 130

Q4 7 6 10 QMOD

DVBEDROP 10 3 DMOD

Q5 3 8 0 QMOD

.ENDS NAND

.SUBCKT ONEBIT 1 2 3 4 5 6

* NODES: INPUT(2), CARRY-IN, OUTPUT, CARRY-OUT, VCC

X1 1 2 7 6 NAND

X2 1 7 8 6 NAND

X3 2 7 9 6 NAND

X4 8 9 10 6 NAND

X5 3 10 11 6 NAND

X6 3 11 12 6 NAND

X7 10 11 13 6 NAND

X8 12 13 4 6 NAND

X9 11 7 5 6 NAND

.ENDS ONEBIT

.SUBCKT TWOBIT 1 2 3 4 5 6 7 8 9

* NODES: INPUT - BIT0(2) / BIT1(2), OUTPUT - BIT0 / BIT1,

* CARRY-IN, CARRY-OUT, VCC

X1 1 2 7 5 10 9 ONEBIT

X2 3 4 10 6 8 9 ONEBIT

.ENDS TWOBIT

.SUBCKT FOURBIT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

* NODES: INPUT - BIT0(2) / BIT1(2) / BIT2(2) / BIT3(2),

* OUTPUT - BIT0 / BIT1 / BIT2 / BIT3, CARRY-IN, CARRY-OUT, VCC

X1 1 2 3 4 9 10 13 16 15 TWOBIT

X2 5 6 7 8 11 12 16 14 15 TWOBIT

.ENDS FOURBIT

*** DEFINE NOMINAL CIRCUIT

.MODEL DMOD D

.MODEL QMOD NPN(BF=75 RB=100 CJE=1PF CJC=3PF)

VCC 99 0 DC 5V

VIN1A 1 0 PULSE(0 3 0 10NS 10NS 10NS 50NS)

VIN1B 2 0 PULSE(0 3 0 10NS 10NS 20NS 100NS)

VIN2A 3 0 PULSE(0 3 0 10NS 10NS 40NS 200NS)

VIN2B 4 0 PULSE(0 3 0 10NS 10NS 80NS 400NS)

VIN3A 5 0 PULSE(0 3 0 10NS 10NS 160NS 800NS)

VIN3B 6 0 PULSE(0 3 0 10NS 10NS 320NS 1600NS)

VIN4A 7 0 PULSE(0 3 0 10NS 10NS 640NS 3200NS)

VIN4B 8 0 PULSE(0 3 0 10NS 10NS 1280NS 6400NS)

X1 1 2 3 4 5 6 7 8 9 10 11 12 0 13 99 FOURBIT

RBIT0 9 0 1K

RBIT1 10 0 1K

RBIT2 11 0 1K

RBIT3 12 0 1K

RCOUT 13 0 1K

*** (FOR THOSE WITH MONEY (AND MEMORY) TO BURN)

.TRAN 1NS 6400NS

.END

9.5 Circuit 5: Transmission-Line Inverter

The following deck simulates a transmission-line inverter. Two transmission-line elements are required since two propagation modes are excited. In the case of a coaxial line, the first line (T1) models the inner conductor with respect to the shield, and the second line (T2) models the shield with respect to the outside world.

TRANSMISSION-LINE INVERTER

V1 1 0 PULSE(0 1 0 0.1N)

R1 1 2 50

X1 2 0 0 4 TLINE

R2 4 0 50

.SUBCKT TLINE 1 2 3 4

T1 1 2 3 4 Z0=50 TD=1.5NS

T2 2 0 4 0 Z0=100 TD=1NS

.ENDS TLINE

.TRAN 0.1NS 20NS

.END

10 APPENDIX B: MODEL AND DEVICE PARAMETERS

The following tables summarise the parameters available for each of the devices and models. There are several tables for each type of device supported by WinSpice.

Input parameters to instances and models are parameters that can occur on an instance or model definition line in the form "keyword=value" where "keyword" is the parameter name as given in the tables. Default input parameters (such as the resistance of a resistor or the capacitance of a capacitor) obviously do not need the keyword specified.

Output parameters are parameters which are available for the output of operating point and debugging information. There are two types of parameters:-

· instance parameters
These are parameters which are calculated for each instance of a device

· model parameters
These are parameters which are calculated for a specific model and are shared by all instances of the model.

Instance parameters are specified as "@device[keyword]" and are available for the most recent point computed or, if specified in a ".save" statement, for an entire simulation as a normal output vector. Thus, to monitor the gate-to-source capacitance of a MOSFET, a command

save @m1[cgs]

given before a transient simulation causes the specified capacitance value to be saved at each timepoint, and a subsequent command such as

plot @m1[cgs]

produces the desired plot (note that the show command does not use this format).

Model parameters are specified as “@model[keyword]” and are available for the most recent point computed or, if specified in a ".save" statement, for an entire simulation as a normal output vector as for instance parameters.

Another example showing the use of instance and model parameters for a BJT model is below:-

.model BC107 NPN(Is=1.527f Xti=3 Eg=1.11 Vaf=106.8 Bf=334.5 Ne=1.642

+ Ise=222f Ikf=.1596 Xtb=1.5 Br=.788 Nc=2 Isc=0 Ikr=0 Re=.6 Rc=0.25

+ Cjc=6.072p Mjc=.3333 Vjc=.75 Fc=.5 Cje=10.67p Mje=.3333 Vje=.75

+ Tr=10n Tf=471.8p Itf=0 Vtf=0 Xtf=0)

. . .

* Declare two BC107 instances in a circuit

Q1 22 24 25 BC107

Q2 42 44 45 BC107

. . .

* Save internal base resistance (model parameter)

* and the base-emitter voltage for q1 and q2.

save @bc107[rb], @q1[vbe], @q2[vbe]

. . .

* Perform an analysis

op

. . .

print @bc107[rb], @q1[vbe], @q2[vbe]

Some variables are listed as both input and output, and their output simply returns the previously input value, or the default value after the simulation has been run. Some parameters are input only because the output system can not handle variables of the given type yet, or the need for them as output variables has not been apparent. Many such input variables are available as output variables in a different format, such as the initial condition vectors that can be retrieved as individual initial condition values. Finally, internally derived values are output only and are provided for debugging and operating point output purposes.

Please note that these tables do not provide the detailed information available about the parameters provided in the section on each device and model, but are provided as a quick reference guide.

10.1 URC: Uniform R.C. line

URC - instance parameters (input-output)

l
Length of transmission line

n
Number of lumps

URC - instance parameters (output-only)

pos_node
Positive node of URC

neg_node
Negative node of URC

gnd
Ground node of URC

URC - model parameters (input-only)

urc
Uniform R.C. line model

URC - model parameters (input-output)

k
Propagation constant of interest

fmax
Maximum frequency

rperl
Resistance per unit length

cperl
Capacitance per unit length

isperl
Saturation current per length

rsperl
Diode resistance per length

10.2 ASRC: Arbitrary Source

ASRC - instance parameters (input-only)

i
Current source

v
Voltage source

ASRC - instance parameters (output-only)

i
Current through source

v
Voltage across source

pos_node
Positive Node

neg_node
Negative Node

10.3 BJT: Bipolar Junction Transistor

BJT - instance parameters (input-only)

ic
Initial condition vector (vbe, vce)

BJT - instance parameters (input-output)

off
Device initially off

icvbe
Initial B-E voltage

icvce
Initial C-E voltage

area
Area factor

temp
Instance temperature

BJT - instance parameters (output-only)

colnode
Number of collector node

basenode
Number of base node

emitnode
Number of emitter node

substnode
Number of substrate node

colprimenode
Internal collector node

baseprimenode
Internal base node

emitprimenode
Internal emitter node

ic
Current at collector node

ib
Current at base node

ie
Emitter current

is
Substrate current

vbe
B-E voltage

vbc
B-C voltage

gm
Small signal transconductance

gpi
Small signal input conductance - pi

gmu
Small signal conductance - mu

gx
Conductance from base to internal base

go
Small signal output conductance

geqcb
d(Ibe)/d(Vbc)

gccs
Internal C-S cap. equiv. cond.

geqbx
Internal C-B-base cap. equiv. cond.

cpi
Internal base to emitter capacitance

cmu
Internal base to collector capacitance

cbx
Base to collector capacitance

ccs
Collector to substrate capacitance

cqbe
Cap. due to charge storage in B-E jct.

cqbc
Cap. due to charge storage in B-C jct.

cqcs
Cap. due to charge storage in C-S jct.

cqbx
Cap. due to charge storage in B-X jct.

cexbc
Total Capacitance in B-X junction

qbe
Charge storage B-E junction

qbc
Charge storage B-C junction

qcs
Charge storage C-S junction

qbx
Charge storage B-X junction

p
Power dissipation

BJT - model parameters (input-output)

npn
NPN type device

pnp
PNP type device

is
Saturation Current

bf
Ideal forward beta

nf
Forward emission coefficient

vaf
Forward Early voltage

va
Forward Early voltage (same as vaf)

ikf
Forward beta roll-off corner current

ik
Forward beta roll-off corner current (same as ikf)

ise
B-E leakage saturation current

ne
B-E leakage emission coefficient

br
Ideal reverse beta

nr
Reverse emission coefficient

var
Reverse Early voltage

vb
Reverse Early voltage (same as var)

ikr
reverse beta roll-off corner current

isc
B-C leakage saturation current

nc
B-C leakage emission coefficient

rb
Zero bias base resistance

irb
Current for base resistance=(rb+rbm)/2

rbm
Minimum base resistance

re
Emitter resistance

rc
Collector resistance

cje
Zero bias B-E depletion capacitance

vje
B-E built in potential

pe
B-E built in potential (same as vje)

mje
B-E junction grading coefficient

me
B-E junction grading coefficient (same as mje)

tf
Ideal forward transit time

xtf
Coefficient for bias dependence of TF

vtf
Voltage giving VBC dependence of TF

itf
High current dependence of TF

ptf
Excess phase

cjc
Zero bias B-C depletion capacitance

vjc
B-C built in potential

pc
B-C built in potential (same as vjc)

mjc
B-C junction grading coefficient

mc
B-C junction grading coefficient (same as mjc)

xcjc
Fraction of B-C cap to internal base

tr
Ideal reverse transit time

cjs
Zero bias C-S capacitance

ccs
Zero bias C-S capacitance

vjs
Substrate junction built in potential

ps
Substrate junction built in potential (same as vjs)

mjs
Substrate junction grading coefficient

ms
Substrate junction grading coefficient (same as mjs)

xtb
Forward and reverse beta temp. exp.

eg
Energy gap for IS temp. dependency

xti
Temp. exponent for IS

fc
Forward bias junction fit parameter

tnom
Parameter measurement temperature

kf
Flicker Noise Coefficient

af
Flicker Noise Exponent

BJT - model parameters (output-only)

type
NPN or PNP

invearlyvoltf
Inverse early voltage:forward

invearlyvoltr
Inverse early voltage:reverse

invrollofff
Inverse roll off - forward

invrolloffr
Inverse roll off - reverse

collectorconduct
Collector conductance

emitterconduct
Emitter conductance

transtimevbcfact
Transit time VBC factor

excessphasefactor
Excess phase fact.

10.4 BSIM1: Berkeley Short Channel IGFET Model

BSIM1 - instance parameters (input-only)

ic
Vector of DS,GS,BS initial voltages

BSIM1 - instance parameters (input-output)

l
Length

w
Width

ad
Drain area

as
Source area

pd
Drain perimeter

ps
Source perimeter

nrd
Number of squares in drain

nrs
Number of squares in source

off
Device is initially off

vds
Initial D-S voltage

vgs
Initial G-S voltage

vbs
Initial B-S voltage

BSIM1 - model parameters (input-only)

nmos
Flag to indicate NMOS

pmos
Flag to indicate PMOS

BSIM1 - model parameters (input-output)

vfb
Flat band voltage

lvfb
Length dependence of vfb

wvfb
Width dependence of vfb

phi
Strong inversion surface potential

lphi
Length dependence of phi

wphi
Width dependence of phi

k1
Bulk effect coefficient 1

lk1
Length dependence of k1

wk1
Width dependence of k1

k2
Bulk effect coefficient 2

lk2
Length dependence of k2

wk2
Width dependence of k2

eta
VDS dependence of threshold voltage

leta
Length dependence of eta

weta
Width dependence of eta

x2e
VBS dependence of eta

lx2e
Length dependence of x2e

wx2e
Width dependence of x2e

x3e
VDS dependence of eta

lx3e
Length dependence of x3e

wx3e
Width dependence of x3e

dl
Channel length reduction in um

dw
Channel width reduction in um

muz
Zero field mobility at VDS=0 VGS=VTH

x2mz
VBS dependence of muz

lx2mz
Length dependence of x2mz

wx2mz
Width dependence of x2mz

mus
Mobility at VDS=VDD VGS=VTH, channel length modulation

lmus
Length dependence of mus

wmus
Width dependence of mus

x2ms
VBS dependence of mus

lx2ms
Length dependence of x2ms

wx2ms
Width dependence of x2ms

x3ms
VDS dependence of mus

lx3ms
Length dependence of x3ms

wx3ms
Width dependence of x3ms

u0
VGS dependence of mobility

lu0
Length dependence of u0

wu0
Width dependence of u0

x2u0
VBS dependence of u0

lx2u0
Length dependence of x2u0

wx2u0
Width dependence of x2u0

u1
VDS dependence of mobility, velocity saturation

lu1
Length dependence of u1

wu1
Width dependence of u1

x2u1
VBS dependence of u1

lx2u1
Length dependence of x2u1

wx2u1
Width dependence of x2u1

x3u1
VDS dependence of u1

lx3u1
Length dependence of x3u1

wx3u1
Width dependence of x3u1

n0
Sub threshold slope

ln0
Length dependence of n0

wn0
Width dependence of n0

nb
VBS dependence of sub threshold slope

lnb
Length dependence of nb

wnb
Width dependence of nb

nd
VDS dependence of sub threshold slope

lnd
Length dependence of nd

wnd
Width dependence of nd

tox
Gate oxide thickness in um

temp
Temperature in degree Celsius

vdd
Supply voltage to specify mus

cgso
Gate source overlap capacitance per unit channel width(m)

cgdo
Gate drain overlap capacitance per unit channel width(m)

cgbo
Gate bulk overlap capacitance per unit channel length(m)

xpart
Flag for channel charge partitioning

rsh
Source drain diffusion sheet resistance in ohm per square

js
Source drain junction saturation current per unit area

pb
Source drain junction built in potential

mj
Source drain bottom junction capacitance grading coefficient

pbsw
Source drain side junction capacitance built in potential

mjsw
Source drain side junction capacitance grading coefficient

cj
Source drain bottom junction capacitance per unit area

cjsw
Source drain side junction capacitance per unit area

wdf
Default width of source drain diffusion in um

dell
Length reduction of source drain diffusion

10.5 BSIM2: Berkeley Short Channel IGFET Model

BSIM2 - instance parameters (input-only)

ic
Vector of DS,GS,BS initial voltages

BSIM2 - instance parameters (input-output)

l
Length

w
Width

ad
Drain area

as
Source area

pd
Drain perimeter

ps
Source perimeter

nrd
Number of squares in drain

nrs
Number of squares in source

off
Device is initially off

vds
Initial D-S voltage

vgs
Initial G-S voltage

vbs
Initial B-S voltage

BSIM2 - model parameters (input-only)

nmos
Flag to indicate NMOS

pmos
Flag to indicate PMOS

BSIM2 - model parameters (input-output)

vfb
Flat band voltage

lvfb
Length dependence of vfb

wvfb
Width dependence of vfb

phi
Strong inversion surface potential

lphi
Length dependence of phi

wphi
Width dependence of phi

k1
Bulk effect coefficient 1

lk1
Length dependence of k1

wk1
Width dependence of k1

k2
Bulk effect coefficient 2

lk2
Length dependence of k2

wk2
Width dependence of k2

eta0
VDS dependence of threshold voltage at VDD=0

leta0
Length dependence of eta0

weta0
Width dependence of eta0

etab
VBS dependence of eta

letab
Length dependence of etab

wetab
Width dependence of etab

dl
Channel length reduction in um

dw
Channel width reduction in um

mu0
Low-field mobility, at VDS=0 VGS=VTH

mu0b
VBS dependence of low-field mobility

lmu0b
Length dependence of mu0b

wmu0b
Width dependence of mu0b

mus0
Mobility at VDS=VDD VGS=VTH

lmus0
Length dependence of mus0

wmus0
Width dependence of mus

musb
VBS dependence of mus

lmusb
Length dependence of musb

wmusb
Width dependence of musb

mu20
VDS dependence of mu in tanh term

lmu20
Length dependence of mu20

wmu20
Width dependence of mu20

mu2b
VBS dependence of mu2

lmu2b
Length dependence of mu2b

wmu2b
Width dependence of mu2b

mu2g
VGS dependence of mu2

lmu2g
Length dependence of mu2g

wmu2g
Width dependence of mu2g

mu30
VDS dependence of mu in linear term

lmu30
Length dependence of mu30

wmu30
Width dependence of mu30

mu3b
VBS dependence of mu3

lmu3b
Length dependence of mu3b

wmu3b
Width dependence of mu3b

mu3g
VGS dependence of mu3

lmu3g
Length dependence of mu3g

wmu3g
Width dependence of mu3g

mu40
VDS dependence of mu in linear term

lmu40
Length dependence of mu40

wmu40
Width dependence of mu40

mu4b
VBS dependence of mu4

lmu4b
Length dependence of mu4b

wmu4b
Width dependence of mu4b

mu4g
VGS dependence of mu4

lmu4g
Length dependence of mu4g

wmu4g
Width dependence of mu4g

ua0
Linear VGS dependence of mobility

lua0
Length dependence of ua0

wua0
Width dependence of ua0

uab
VBS dependence of ua

luab
Length dependence of uab

wuab
Width dependence of uab

ub0
Quadratic VGS dependence of mobility

lub0
Length dependence of ub0

wub0
Width dependence of ub0

ubb
VBS dependence of ub

lubb
Length dependence of ubb

wubb
Width dependence of ubb

u10
VDS dependence of mobility

lu10
Length dependence of u10

wu10
Width dependence of u10

u1b
VBS dependence of u1

lu1b
Length dependence of u1b

wu1b
Width dependence of u1b

u1d
VDS dependence of u1

lu1d
Length dependence of u1d

wu1d
Width dependence of u1d

n0
Sub threshold slope at VDS=0 VBS=0

ln0
Length dependence of n0

wn0
Width dependence of n0

nb
VBS dependence of n

lnb
Length dependence of nb

wnb
Width dependence of nb

nd
VDS dependence of n

lnd
Length dependence of nd

wnd
Width dependence of nd

vof0
Threshold voltage offset AT VDS=0 VBS=0

lvof0
Length dependence of vof0

wvof0
Width dependence of vof0

vofb
VBS dependence of vof

lvofb
Length dependence of vofb

wvofb
Width dependence of vofb

vofd
VDS dependence of vof

lvofd
Length dependence of vofd

wvofd
Width dependence of vofd

ai0
Pre-factor of hot-electron effect

lai0
Length dependence of ai0

wai0
Width dependence of ai0

aib
VBS dependence of ai

laib
Length dependence of aib

waib
Width dependence of aib

bi0
Exponential factor of hot-electron effect

lbi0
Length dependence of bi0

wbi0
Width dependence of bi0

bib
VBS dependence of bi

lbib
Length dependence of bib

wbib
Width dependence of bib

vghigh
Upper bound of the cubic spline function

lvghigh
Length dependence of vghigh

wvghigh
Width dependence of vghigh

vglow
Lower bound of the cubic spline function

lvglow
Length dependence of vglow

wvglow
Width dependence of vglow

tox
Gate oxide thickness in um

temp
Temperature in degree Celsius

vdd
Maximum Vds

vgg
Maximum Vgs

vbb
Maximum Vbs

cgso
Gate source overlap capacitance per unit channel width(m)

cgdo
Gate drain overlap capacitance per unit channel width(m)

cgbo
Gate bulk overlap capacitance per unit channel length(m)

xpart
Flag for channel charge partitioning

rsh
Source drain diffusion sheet resistance in ohm per square

js
Source drain junction saturation current per unit area

pb
Source drain junction built in potential

mj
Source drain bottom junction capacitance grading coefficient

pbsw
Source drain side junction capacitance built in potential

mjsw
Source drain side junction capacitance grading coefficient

cj
Source drain bottom junction capacitance per unit area

cjsw
Source drain side junction capacitance per unit area

wdf
Default width of source drain diffusion in um

dell
Length reduction of source drain diffusion

10.6 Capacitor: Fixed capacitor

Capacitor - instance parameters (input-output)

capacitance
Device capacitance

ic
Initial capacitor voltage

w
Device width

l
Device length

Capacitor - instance parameters (output-only)

i
Device current

p
Instantaneous device power

Capacitor - model parameters (input-only)

c
Capacitor model

Capacitor - model parameters (input-output)

cj
Bottom Capacitance per area

cjsw
Sidewall capacitance per meter

defw
Default width

tc1
First order temp. coefficient

tc2
Second order temp. coefficient

vc1
First order voltage coefficient

vc2
Second order voltage coefficient

narrow
Width correction factor

10.7 CCCS: Current controlled current source

CCCS - instance parameters (input-output)

gain
Gain of source

control
Name of controlling source

CCCS - instance parameters (output-only)

neg_node
Negative node of source

pos_node
Positive node of source

i
CCCS output current

v
CCCS voltage at output

p
CCCS power

10.8 CCVS: Linear current controlled current source

CCVS - instance parameters (input-output)

gain
Transresistance (gain)

control
Controlling voltage source

CCVS - instance parameters (output-only)

pos_node
Positive node of source

neg_node
Negative node of source

i
CCVS output current

v
CCVS output voltage

p
CCVS power

10.9 CSwitch: Current controlled ideal switch

CSwitch - instance parameters (input-only)

on
Initially closed

off
Initially open

CSwitch - instance parameters (input-output)

control
Name of controlling source

CSwitch - instance parameters (output-only)

pos_node
Positive node of switch

neg_node
Negative node of switch

i
Switch current

p
Instantaneous power

Cswitch - model parameters (input-output)

csw
Current controlled switch model

it
Threshold current

ih
Hysteresis current

ron
Closed resistance

roff
Open resistance

ion
Control current to switch on

ioff
Control current to switch off

Cswitch - model parameters (output-only)

gon
Closed conductance

goff
Open conductance

10.10 Diode: Junction Diode model

Diode - instance parameters (input-output)

off
Initially off

temp
Instance temperature

ic
Initial device voltage

area
Area factor

Diode – instance parameters (output-only)

vd
Diode voltage

id
Diode current

c
Diode current

gd
Diode conductance

cd
Diode capacitance

charge
Diode capacitor charge

capcur
Diode capacitor current

p
Diode power

Diode - model parameters (input-only)

d
Diode model

Diode - model parameters (input-output)

is
Saturation current

tnom
Parameter measurement temperature

rs
Ohmic resistance

n
Emission Coefficient

tt
Transit Time

cjo
Junction capacitance

cj0
Junction capacitance

vj
Junction potential

m
Grading coefficient

eg
Activation energy

xti
Saturation current temperature exp.

kf
flicker noise coefficient

af
flicker noise exponent

fc
Forward bias junction fit parameter

bv
Reverse breakdown voltage

ibv
Current at reverse breakdown voltage

Diode - model parameters (output-only)

cond
Ohmic conductance

10.11 Inductor: Inductors

Inductor - instance parameters (input-output)

inductance
Inductance of inductor

ic
Initial current through inductor

Inductor - instance parameters (output-only)

flux
Flux through inductor

v
Terminal voltage of inductor

Volt
Terminal voltage of inductor. Same a ‘v’.

i
Current through the inductor

current
Current through the inductor. Same as ‘i’.

p
Instantaneous power dissipated by the inductor

10.12 mutual: Mutual inductors

mutual - instance parameters (input-output)

k
Mutual inductance

coefficient
(null)

inductor1
First coupled inductor

inductor2
Second coupled inductor

10.13 Isource: Independent current source

Isource - instance parameters (input-only)

pulse

Pulse description

sine

Sinusoidal source description

sin

Sinusoidal source description

exp

Exponential source description

pwl

Piecewise linear description

sffm

single freq. FM description

ac

AC magnitude,phase vector

c

Current through current source

distof1

f1 input for distortion

distof2

f2 input for distortion

Isource - instance parameters (input-output)

dc

DC value of source

acmag

AC magnitude

acphase

AC phase

Isource - instance parameters (output-only)

neg_node

Negative node of source

pos_node

Positive node of source

acreal

AC real part

acimag

AC imaginary part

function

Function of the source

order

Order of the source function

coeffs

Coefficients of the source

v

Voltage across the supply

p

Power supplied by the source

10.14 JFET: Junction Field effect transistor

JFET - instance parameters (input-output)

off

Device initially off

ic

Initial VDS,VGS vector

area

Area factor

ic-vds

Initial D-S voltage

ic-vgs

Initial G-S voltage

temp

Instance temperature

JFET - instance parameters (output-only)

drain-node

Number of drain node

gate-node

Number of gate node

source-node

Number of source node

drain-prime-node

Internal drain node

source-prime-node
Internal source node

vgs

Voltage G-S

vgd

Voltage G-D

ig

Current at gate node

id

Current at drain node

is

Source current

igd

Current G-D

gm

Transconductance

gds

Conductance D-S

ggs

Conductance G-S

ggd

Conductance G-D

qgs

Charge storage G-S junction

qgd

Charge storage G-D junction

cqgs

Capacitance due to charge storage G-S junction

cqgd

Capacitance due to charge storage G-D junction

p

Power dissipated by the JFET

JFET - model parameters (input-output)

njf

N type JFET model

pjf

P type JFET model

vt0

Threshold voltage

vto

Threshold voltage

beta

Transconductance parameter

lambda

Channel length modulation param.

rd

Drain ohmic resistance

rs

Source ohmic resistance

cgs

G-S junction capacitance

cgd

G-D junction cap

pb

Gate junction potential

is

Gate junction saturation current

fc

Forward bias junction fit parm.

b

Doping tail parameter

tnom

Parameter measurement temperature

kf

Flicker Noise Coefficient

af

Flicker Noise Exponent

JFET - model parameters (output-only)

type

N-type or P-type JFET model

gd

Drain conductance

gs

Source conductance

10.15 LTRA: Lossy transmission line

LTRA - instance parameters (input-only)

ic

Initial condition vector:v1,i1,v2,i2

LTRA - instance parameters (input-output)

v1

Initial voltage at end 1

v2

Initial voltage at end 2

i1

Initial current at end 1

i2

Initial current at end 2

LTRA - instance parameters (output-only)

pos_node1

Positive node of end 1 of t-line

neg_node1

Negative node of end 1 of t.line

pos_node2

Positive node of end 2 of t-line

neg_node2

Negative node of end 2 of t-line

LTRA - model parameters (input-output)

ltra

LTRA model

r

Resistance per metre

l

Inductance per metre

g

(null)

c

Capacitance per metre

len

Length of line

nocontrol

No timestep control

steplimit

Always limit timestep to 0.8*(delay of line)

nosteplimit

Don't always limit timestep to 0.8*(delay of line)

lininterp

Use linear interpolation

quadinterp

Use quadratic interpolation

mixedinterp

Use linear interpolation if quadratic results look unacceptable

truncnr

Use N-R iterations for step calculation in LTRAtrunc

truncdontcut

Don't limit timestep to keep impulse response calculation errors low

compactrel

Special reltol for straight line checking

compactabs

Special abstol for straight line checking

LTRA - model parameters (output-only)

rel

Rel. rate of change of deriv. for bkpt

abs

Abs. rate of change of deriv. for bkpt

10.16 MES: GaAs MESFET model

MES - instance parameters (input-output)

area

Area factor

icvds

Initial D-S voltage

icvgs

Initial G-S voltage

MES - instance parameters (output-only)

off

Device initially off

dnode

Number of drain node

gnode

Number of gate node

snode

Number of source node

dprimenode

Number of internal drain node

sprimenode

Number of internal source node

vgs

Gate-Source voltage

vgd

Gate-Drain voltage

cg

Gate capacitance

cd

Drain capacitance

cgd

Gate-Drain capacitance

gm

Transconductance

gds

Drain-Source conductance

ggs

Gate-Source conductance

ggd

Gate-Drain conductance

cqgs

Capacitance due to gate-source charge storage

cqgd

Capacitance due to gate-drain charge storage

qgs

Gate-Source charge storage

qgd

Gate-Drain charge storage

is

Source current

p

Power dissipated by the mesfet

MES - model parameters (input-only)

nmf

N type MESfet model

pmf

P type MESfet model

MES - model parameters (input-output)

vt0

Pinch-off voltage

vto

Pinch-off voltage

alpha

Saturation voltage parameter

beta

Transconductance parameter

lambda

Channel length modulation parm.

b

Doping tail extending parameter

rd

Drain ohmic resistance

rs

Source ohmic resistance

cgs

G-S junction capacitance

cgd

G-D junction capacitance

pb

Gate junction potential

is

Junction saturation current

fc

Forward bias junction fit parm.

kf

Flicker noise coefficient

af

Flicker noise exponent

MES - model parameters (output-only)

type

N-type or P-type MESfet model

gd

Drain conductance

gs

Source conductance

depl_cap

Depletion capacitance

vcrit

Critical voltage

10.17 Mos1: Level 1 MOSFET model with Meyer capacitance model

Mos1 - instance parameters (input-only)

off

Device initially off

ic

Vector of D-S, G-S, B-S voltages

Mos1 - instance parameters (input-output)

l

Length

w

Width

ad

Drain area

as

Source area

pd

Drain perimeter

ps

Source perimeter

nrd

Drain squares

nrs

Source squares

icvds

Initial D-S voltage

icvgs

Initial G-S voltage

icvbs

Initial B-S voltage

temp

Instance temperature

Mos1 - instance parameters (output-only)

id

Drain current

is

Source current

ig

Gate current

ib

Bulk current

ibd

B-D junction current

ibs

B-S junction current

vgs

Gate-Source voltage

vds

Drain-Source voltage

vbs

Bulk-Source voltage

vbd

Bulk-Drain voltage

dnode

Number of the drain node

gnode

Number of the gate node

snode

Number of the source node

bnode

Number of the node

dnodeprime

Number of int. drain node

snodeprime

Number of int. source node

von

Turn-on voltage

vdsat

Saturation drain voltage

sourcevcrit

Critical source voltage

drainvcrit

Critical drain voltage

rs

Source resistance

sourceconductance
Conductance of source

rd

Drain conductance

drainconductance

Conductance of drain

gm

Transconductance

gds

Drain-Source conductance

gmb

Bulk-Source transconductance

gmbs

Bulk-Source transconductance

gbd

Bulk-Drain conductance

gbs

Bulk-Source conductance

cbd

Bulk-Drain capacitance

cbs

Bulk-Source capacitance

cgs

Gate-Source capacitance

cgd

Gate-Drain capacitance

cgb

Gate-Bulk capacitance

cqgs

Capacitance due to gate-source charge storage

cqgd

Capacitance due to gate-drain charge storage

cqgb

Capacitance due to gate-bulk charge storage

cqbd

Capacitance due to bulk-drain charge storage

cqbs

Capacitance due to bulk-source charge storage

cbd0

Zero-Bias B-D junction capacitance

cbdsw0

cbs0

Zero-Bias B-S junction capacitance

cbssw0

qgs

Gate-Source charge storage

qgd

Gate-Drain charge storage

qgb

Gate-Bulk charge storage

qbd

Bulk-Drain charge storage

qbs

Bulk-Source charge storage

p

Instantaneous power

Mos1 - model parameters (input-only)

nmos

N type MOSFET model

pmos

P type MOSFET model

Mos1 - model parameters (input-output)

vto

Threshold voltage

vt0

Threshold voltage

kp

Transconductance parameter

gamma

Bulk threshold parameter

phi

Surface potential

lambda

Channel length modulation

rd

Drain ohmic resistance

rs

Source ohmic resistance

cbd

B-D junction capacitance

cbs

B-S junction capacitance

is

Bulk junction sat. current

pb

Bulk junction potential

cgso

Gate-source overlap cap.

cgdo

Gate-drain overlap cap.

cgbo

Gate-bulk overlap cap.

rsh

Sheet resistance

cj

Bottom junction cap per area

mj

Bottom grading coefficient

cjsw

Side junction cap per area

mjsw

Side grading coefficient

js

Bulk jct. sat. current density

tox

Oxide thickness

ld

Lateral diffusion

u0

Surface mobility

uo

Surface mobility

fc

Forward bias jct. fit parm.

nsub

Substrate doping

tpg

Gate type

nss

Surface state density

tnom

Parameter measurement temperature

kf

Flicker noise coefficient

af

Flicker noise exponent

Mos1 - model parameters (output-only)

type

N-channel or P-channel MOS

10.18 Mos2: Level 2 MOSFET model with Meyer capacitance model

Mos2 - instance parameters (input-only)

off

Device initially off

ic

Vector of D-S, G-S, B-S voltages

Mos2 - instance parameters (input-output)

l

Length

w

Width

ad

Drain area

as

Source area

pd

Drain perimeter

ps

Source perimeter

nrd

Drain squares

nrs

Source squares

icvds

Initial D-S voltage

icvgs

Initial G-S voltage

icvbs

Initial B-S voltage

temp

Instance operating temperature

Mos2 - instance parameters (output-only)

id

Drain current

cd

Drain current

ibd

B-D junction current

ibs

B-S junction current

is

Source current

ig

Gate current

ib

Bulk current

vgs

Gate-Source voltage

vds

Drain-Source voltage

vbs

Bulk-Source voltage

vbd

Bulk-Drain voltage

dnode

Number of drain node

gnode

Number of gate node

snode

Number of source node

bnode

Number of bulk node

dnodeprime

Number of internal drain node

snodeprime

Number of internal source node

von

Turn-on voltage

vdsat

Saturation drain voltage

sourcevcrit

Critical source voltage

drainvcrit

Critical drain voltage

rs

Source resistance

sourceconductance
Source conductance

rd

Drain resistance

drainconductance

Drain conductance

gm

Transconductance

gds

Drain-Source conductance

gmb

Bulk-Source transconductance

gmbs

Bulk-Source transconductance

gbd

Bulk-Drain conductance

gbs

Bulk-Source conductance

cbd

Bulk-Drain capacitance

cbs

Bulk-Source capacitance

cgs

Gate-Source capacitance

cgd

Gate-Drain capacitance

cgb

Gate-Bulk capacitance

cbd0

Zero-Bias B-D junction capacitance

cbdsw0

cbs0

Zero-Bias B-S junction capacitance

cbssw0

cqgs

Capacitance due to gate-source charge storage

cqgd

Capacitance due to gate-drain charge storage

cqgb

Capacitance due to gate-bulk charge storage

cqbd

Capacitance due to bulk-drain charge storage

cqbs

Capacitance due to bulk-source charge storage

qgs

Gate-Source charge storage

qgd

Gate-Drain charge storage

qgb

Gate-Bulk charge storage

qbd

Bulk-Drain charge storage

qbs

Bulk-Source charge storage

p

Instantaneous power

Mos2 - model parameters (input-only)

nmos

N type MOSFET model

pmos

P type MOSFET model

Mos2 - model parameters (input-output)

vto

Threshold voltage

vt0

Threshold voltage

kp

Transconductance parameter

gamma

Bulk threshold parameter

phi

Surface potential

lambda

Channel length modulation

rd

Drain ohmic resistance

rs

Source ohmic resistance

cbd

B-D junction capacitance

cbs

B-S junction capacitance

is

Bulk junction sat. current

pb

Bulk junction potential

cgso

Gate-source overlap cap.

cgdo

Gate-drain overlap cap.

cgbo

Gate-bulk overlap cap.

rsh

Sheet resistance

cj

Bottom junction cap per area

mj

Bottom grading coefficient

cjsw

Side junction cap per area

mjsw

Side grading coefficient

js

Bulk jct. sat. current density

tox

Oxide thickness

ld

Lateral diffusion

u0

Surface mobility

uo

Surface mobility

fc

Forward bias jct. fit parm.

nsub

Substrate doping

tpg

Gate type

nss

Surface state density

delta

Width effect on threshold

uexp

Crit. field exp for mob. deg.

ucrit

Crit. field for mob. degradation

vmax

Maximum carrier drift velocity

xj

Junction depth

neff

Total channel charge coeff.

nfs

Fast surface state density

tnom

Parameter measurement temperature

kf

Flicker noise coefficient

af

Flicker noise exponent

Mos2 - model parameters (output-only)

type

N-channel or P-channel MOS

10.19 Mos3: Level 3 MOSFET model with Meyer capacitance model

Mos3 - instance parameters (input-only)

off

Device initially off

Mos3 - instance parameters (input-output)

l

Length

w

Width

ad

Drain area

as

Source area

pd

Drain perimeter

ps

Source perimeter

nrd

Drain squares

nrs

Source squares

icvds

Initial D-S voltage

icvgs

Initial G-S voltage

icvbs

Initial B-S voltage

ic

Vector of D-S, G-S, B-S voltages

temp

Instance operating temperature

Mos3 - instance parameters (output-only)

id

Drain current

cd

Drain current

ibd

B-D junction current

ibs

B-S junction current

is

Source current

ig

Gate current

ib

Bulk current

vgs

Gate-Source voltage

vds

Drain-Source voltage

vbs

Bulk-Source voltage

vbd

Bulk-Drain voltage

dnode

Number of drain node

gnode

Number of gate node

snode

Number of source node

bnode

Number of bulk node

dnodeprime

Number of internal drain node

snodeprime

Number of internal source node

von

Turn-on voltage

vdsat

Saturation drain voltage

sourcevcrit

Critical source voltage

drainvcrit

Critical drain voltage

rs

Source resistance

sourceconductance
Source conductance

rd

Drain resistance

drainconductance

Drain conductance

gm

Transconductance

gds

Drain-Source conductance

gmb

Bulk-Source transconductance

gmbs

Bulk-Source transconductance

gbd

Bulk-Drain conductance

gbs

Bulk-Source conductance

cbd

Bulk-Drain capacitance

cbs

Bulk-Source capacitance

cgs

Gate-Source capacitance

cgd

Gate-Drain capacitance

cgb

Gate-Bulk capacitance

cqgs

Capacitance due to gate-source charge storage

cqgd

Capacitance due to gate-drain charge storage

cqgb

Capacitance due to gate-bulk charge storage

cqbd

Capacitance due to bulk-drain charge storage

cqbs

Capacitance due to bulk-source charge storage

cbd0

Zero-Bias B-D junction capacitance

cbdsw0

Zero-Bias B-D sidewall capacitance

cbs0

Zero-Bias B-S junction capacitance

cbssw0

Zero-Bias B-S sidewall capacitance

qbs

Bulk-Source charge storage

qgs

Gate-Source charge storage

qgd

Gate-Drain charge storage

qgb

Gate-Bulk charge storage

qbd

Bulk-Drain charge storage

p

Instantaneous power

Mos3 - model parameters (input-only)

nmos

N type MOSFET model

pmos

P type MOSFET model

Mos3 - model parameters (input-output)

vto

Threshold voltage

vt0

Threshold voltage

kp

Transconductance parameter

gamma

Bulk threshold parameter

phi

Surface potential

rd

Drain ohmic resistance

rs

Source ohmic resistance

cbd

B-D junction capacitance

cbs

B-S junction capacitance

is

Bulk junction sat. current

pb

Bulk junction potential

cgso

Gate-source overlap cap.

cgdo

Gate-drain overlap cap.

cgbo

Gate-bulk overlap cap.

rsh

Sheet resistance

cj

Bottom junction cap per area

mj

Bottom grading coefficient

cjsw

Side junction cap per area

mjsw

Side grading coefficient

js

Bulk jct. sat. current density

tox

Oxide thickness

ld

Lateral diffusion

u0

Surface mobility

uo

Surface mobility

fc

Forward bias jct. fit parm.

nsub

Substrate doping

tpg

Gate type

nss

Surface state density

vmax

Maximum carrier drift velocity

xj

Junction depth

nfs

Fast surface state density

xd

Depletion layer width

alpha

Alpha

eta

Vds dependence of threshold voltage

delta

Width effect on threshold

input_delta

(null)

theta

Vgs dependence on mobility

kappa

Kappa

tnom

Parameter measurement temperature

kf

Flicker noise coefficient

af

Flicker noise exponent

Mos3 - model parameters (output-only)

type

N-channel or P-channel MOS

10.20 Mos6: Level 6 MOSFET model with Meyer capacitance model

Mos6 - instance parameters (input-only)

off

Device initially off

ic

Vector of D-S, G-S, B-S voltages

Mos6 - instance parameters (input-output)

l

Length

w

Width

ad

Drain area

as

Source area

pd

Drain perimeter

ps

Source perimeter

nrd

Drain squares

nrs

Source squares

icvds

Initial D-S voltage

icvgs

Initial G-S voltage

icvbs

Initial B-S voltage

temp

Instance temperature

Mos6 - instance parameters (output-only)

id

Drain current

cd

Drain current

is

Source current

ig

Gate current

ib

Bulk current

ibs

B-S junction capacitance

ibd

B-D junction capacitance

vgs

Gate-Source voltage

vds

Drain-Source voltage

vbs

Bulk-Source voltage

vbd

Bulk-Drain voltage

dnode

Number of the drain node

gnode

Number of the gate node

snode

Number of the source node

bnode

Number of the node

dnodeprime

Number of int. drain node

snodeprime

Number of int. source node

rs

Source resistance

sourceconductance
Source conductance

rd

Drain resistance

drainconductance

Drain conductance

von

Turn-on voltage

vdsat

Saturation drain voltage

sourcevcrit

Critical source voltage

drainvcrit

Critical drain voltage

gmbs

Bulk-Source transconductance

gm

Transconductance

gds

Drain-Source conductance

gbd

Bulk-Drain conductance

gbs

Bulk-Source conductance

cgs

Gate-Source capacitance

cgd

Gate-Drain capacitance

cgb

Gate-Bulk capacitance

cbd

Bulk-Drain capacitance

cbs

Bulk-Source capacitance

cbd0

Zero-Bias B-D junction capacitance

cbdsw0

cbs0

Zero-Bias B-S junction capacitance

cbssw0

cqgs

Capacitance due to gate-source charge storage

cqgd

Capacitance due to gate-drain charge storage

cqgb

Capacitance due to gate-bulk charge storage

cqbd

Capacitance due to bulk-drain charge storage

cqbs

Capacitance due to bulk-source charge storage

qgs

Gate-Source charge storage

qgd

Gate-Drain charge storage

qgb

Gate-Bulk charge storage

qbd

Bulk-Drain charge storage

qbs

Bulk-Source charge storage

p

Instantaneous power

Mos6 - model parameters (input-only)

nmos

N type MOSFET model

pmos

P type MOSFET model

Mos6 - model parameters (input-output)

vto

Threshold voltage

vt0

Threshold voltage

kv

Saturation voltage factor

nv

Saturation voltage coeff.

kc

Saturation current factor

nc

Saturation current coeff.

nvth

Threshold voltage coeff.

ps

Sat. current modification par.

gamma

Bulk threshold parameter

gamma1

Bulk threshold parameter 1

sigma

Static feedback effect par.

phi

Surface potential

lambda

Channel length modulation param.

lambda0

Channel length modulation param. 0

lambda1

Channel length modulation param. 1

rd

Drain ohmic resistance

rs

Source ohmic resistance

cbd

B-D junction capacitance

cbs

B-S junction capacitance

is

Bulk junction sat. current

pb

Bulk junction potential

cgso

Gate-source overlap cap.

cgdo

Gate-drain overlap cap.

cgbo

Gate-bulk overlap cap.

rsh

Sheet resistance

cj

Bottom junction cap per area

mj

Bottom grading coefficient

cjsw

Side junction cap per area

mjsw

Side grading coefficient

js

Bulk jct. sat. current density

ld

Lateral diffusion

tox

Oxide thickness

u0

Surface mobility

uo

Surface mobility

fc

Forward bias jct. fit parm.

tpg

Gate type

nsub

Substrate doping

nss

Surface state density

tnom

Parameter measurement temperature

Mos6 - model parameters (output-only)

type

N-channel or P-channel MOS

10.21 Resistor: Simple resistor

Resistor - instance parameters (input-output)

resistance

Resistance

temp

Instance operating temperature

l

Length

w

Width

Resistor - instance parameters (output-only)

i

Current

p

Power

Resistor - model parameters (input-only)

r

Device is a resistor model

Resistor - model parameters (input-output)

rsh

Sheet resistance

narrow

Narrowing of resistor

tc1

First order temp. coefficient

tc2

Second order temp. coefficient

defw

Default device width

tnom

Parameter measurement temperature

10.22 Switch: Ideal voltage controlled switch

Switch - instance parameters (input-only)

on

Switch initially closed

off

Switch initially open

Switch - instance parameters (input-output)

pos_node

Positive node of switch

neg_node

Negative node of switch

Switch - instance parameters (output-only)

cont_p_node

Positive contr. node of switch

cont_n_node

Positive contr. node of switch

i

Switch current

p

Switch power

Switch - model parameters (input-output)

sw

Switch model

vt

Threshold voltage

vh

Hysteresis voltage

ron

Resistance when closed

roff

Resistance when open

von

Control voltage to switch on

voff

Control voltage to switch off

Switch - model parameters (output-only)

gon

Conductance when closed

goff

Conductance when open

10.23 Tranline: Lossless transmission line

Tranline - instance parameters (input-only)

ic

Initial condition vector:v1,i1,v2,i2

Tranline - instance parameters (input-output)

z0

Characteristic impedance

zo

Characteristic impedance

f

Frequency

td

Transmission delay

nl

Normalized length at frequency given

v1

Initial voltage at end 1

v2

Initial voltage at end 2

i1

Initial current at end 1

i2

Initial current at end 2

Tranline - instance parameters (output-only)

rel

Rel. rate of change of deriv. for bkpt

abs

Abs. rate of change of deriv. for bkpt

pos_node1

Positive node of end 1 of t. line

neg_node1

Negative node of end 1 of t. line

pos_node2

Positive node of end 2 of t. line

neg_node2

Negative node of end 2 of t. line

delays

Delayed values of excitation

10.24 VCCS: Voltage controlled current source

VCCS - instance parameters (input-output)

gain

Transconductance of source (gain)

VCCS - instance parameters (output-only)

pos_node

Positive node of source

neg_node

Negative node of source

cont_p_node

Positive node of contr. source

cont_n_node

Negative node of contr. source

i

Output current

v

Voltage across output

p

Power

10.25 VCVS: Voltage controlled voltage source

VCVS - instance parameters (input-only)

ic

Initial condition of controlling source

VCVS - instance parameters (input-output)

gain

Voltage gain

VCVS - instance parameters (output-only)

pos_node

Positive node of source

neg_node

Negative node of source

cont_p_node

Positive node of contr. source

cont_n_node

Negative node of contr. source

i

Output current

v

Output voltage

p

Power

10.26 Vsource: Independent voltage source

Vsource - instance parameters (input-only)

pulse
Pulse description

sine
Sinusoidal source description

sin
Sinusoidal source description

exp
Exponential source description

pwl
Piecewise linear description

sffm
Single freq. FM description

ac
AC magnitude, phase vector

distof1
f1 input for distortion

distof2
f2 input for distortion

Vsource - instance parameters (input-output)

dc
D.C. source value

acmag
A.C. Magnitude

acphase
A.C. Phase

Vsource - instance parameters (output-only)

pos_node
Positive node of source

neg_node
Negative node of source

function
Function of the source

order
Order of the source function

coeffs
Coefficients for the function

acreal
AC real part

acimag
AC imaginary part

i
Voltage source current

p
Instantaneous power

� Spice3F4 was developed by the Department of Electrical Engineering and Computer Sciences, University of California, Berkeley.

_943303953

_957592609

_1039306241.unknown

_1039559230.unknown

_1039559354.unknown

_1039559560.unknown

_1039559280.unknown

_1039306283.unknown

_1039306299.unknown

_1039304560.unknown

_1039306200.unknown

_943303961

_957592428

_957592456

_957592559

_957592480

_957592441

_943303978

_957592328

_943303980

_943303976

_943303957

_943303959

_943303955

_943303942

_943303946

_943303948

_943303944

_943303938

_943303940

_943303935

