
Using the PDIUSBD11 April 2002 www.beyondlogic.org

PDIUSBD11 – USB Peripheral with I2C Serial Interface

Features

The PDIUSBD11 USB Device with Serial Interface from Philips Semiconductor allows almost any
microcontroller the option of having a USB Interface. Being a full speed device, it allows USB transfer
modes including Control, Bulk and Interrupt. It doe not support Isochronous. It’s I2C Interface can be
clocked at a maximum of 1Mbit/s with a theoretical maximum transfer of 568KB/s1

, thus makes
communication between the microcontroller and PDIUSBD11 quite a bit slower than the 12Mbits/s
achievable with a full speed USB device.

The PDIUSBD11 is a 3.3v device with 5V tolerant I/O. Don’t let this put you off when considering your
design. A small low powered 3.3Volt regulator is all that is needed to interface to your 5V logic. The I/O
pins are open drain, thus using pull up resistors to 5V, a 0 to 5v logic output is obtainable. Unlike other
USB peripheral IC’s such as National’s USBN9602 which require a 48Mhz crystal, the PDIUSBD11 uses a
in-built PLL to derive it’s internal 48MHz from a 12MHz Crystal. Not only does this make it cheaper as
48MHz crystals are hard to obtain, but it also helps reduce EMI.

But with all these positives, there must be some negatives. Lack of documentation is one. Philips gives no
sample circuits in their data sheet, makes little effort to describe any supporting passive components
around it and assumes you will consult the USB Specification for most data. After numerous contacts, and
reading between the lines a basic circuit can be sought. What is more worrying is the software. Philips has
left out critical initialisation information regarding the disabling of the HUB, and has repeatedly specified
wrong commands for the clearing of interrupts. It would be almost impossible to get the PDIUSBD11 going
from just the data sheet alone.

Oscillator

As discussed, the clock is generated by a 12MHz Crystal. The data sheet suggests that no external
components other than the crystal are needed. This is true in many cases, however Guy Jaumotte from
Philip Semiconductor states they are not needed, but are used to guarantee start-up. It’s definitely much
easier to add them rather than argue and have oscillator problems later down the track. When designing a
board, it’s wise to place pads for the capacitors even if you do not add them during manufacture.

USB Termination Resistors

The data sheet would suggest some series termination resistors are required to connect the transceiver to
the USB Cable. This is the classic case where Philips expects you to look up the USB Spec, with little
knowledge of what’s actually in the PDIUSBD11. 22ohm ±1% resistors have been used in this example,
but it’s suggested that anything from 22ohms to 44ohms can be used. Their purpose is impedance
matching of the bus. The analog input pins, have an internal pull down resistor of approximately 15K and a
software selectable pull up resistor to D+, known as SoftConnectTM.

VBUS

VBUS is used to detect a connection to the USB Bus. Without a presence, the PDIUSBD11 doesn’t generate
any interrupts or returns a status. VBUS is also used to enable SoftConnect should SoftConnect be enabled
using the Set Mode command. The PDIUSBD11, being 5V tolerant will allow the VBUS pin to be connected
directly to the 5V Bus power supply. However being a 3.3V device, it’s wise to use a voltage divider
network to obtain 3.3v for the VBUS Pin. However as we will discover complications will result in suspend.

“The PDIUSBD11 is 5.5 Volt tolerant (see Data sheet) so you can connect directly the Bus power supply line to the
VBUS pin. However the device Vcc is 3.3 Volt so it make sense to connect the Bus power line via a divider network.
Any combination of resistor will do providing that take into account the maximum voltage drop allowed on Vbus(See
USB specs), the minimum voltage that is recognised as a HIGH in 3.3Volt technology (approx 2Volt) and the maximum
consumption allowed in suspend mode (500microAmp). In a Self power mode, the pin consumes 1 microAmp and you
have to take into account the bus divider network consumption [Vbus - 1.5KOhm - D+ - 15KOhm - GND]”

Guy.Jaumotte@Philips.com

Using the PDIUSBD11 April 2002 www.beyondlogic.org

PDIUSBD11 Pin Descriptions

Pin Pin Name Type Description

1 Test Input For normal operation connect to ground.
2 Reset_N Schmitt Trigger Input Reset. PDIUSBD11 provides internal reset circuit, thus may be tied

directly to VCC should an external reset not be needed.
3 XTAL1 Input Connect to 12Mhz Crystal. While the PDIUSBD11 is designed not to

require any additional circuitry, a capacitor (~22pF) to ground will
help guarantee start-up.

4 XTAL2 Output Connect to 12Mhz Crystal. While the PDIUSBD11 is designed not to
require any additional circuitry, a capacitor (~22pF) to ground will
help guarantee start-up.

5 ClkOut 3mA Output Programmable Clock Output. This output defaults to 4MHz which can
be used to clock a microcontroller. This pin will stabilise after 1mS
from power-on and 320µS after suspend. If this output is used to
control a microcontroller, care should be taken to ensure the µC
comes out of reset after 1mS by using a suitably timed RC network.

6 VCC Power Connect to a 3.3V supply with a tolerance of ± 0.3Volts.
7 Suspend Bi-Directional

OD 6mA Sink
This pin is bi-directional, not an output only as the PDIUSBD11 data
sheet states. This line can be tied low to prevent the PDIUSBD11
from going into suspend, or pulled low during suspend to wake up the
PDIUSBD11.

8 INT_N OD Out 6mA Sink Interrupt Output. Interrupt is level sensitive and will go low on an
interrupt occurring and return high once all interrupts have been
cleared. Most microcontrollers will accept only an Edge Sensitive
Interrupt, thus care should be taken at the end of the Interrupt
Service Routine, to check that all interrupts have been dealt with
before returning from interrupt. The other option is to poll the INT_N
Pin.

9 SDA OD I/O 6mA Sink I2C Serial Data. Bi-directional pin. Use a pull up resistor if talking
directly to a µC or follow the I2C Specifications for connection to an
I2C Bus.

10 SCL OD I/O 6mA Sink I2C Serial Clock. Bi-directional pin. Use a pull up resistor if talking
directly to a µC or follow the I2C Specifications for connection to an
I2C Bus.

11 GND Power Ground.
12 DP AI/O USB D+ Connection. Series termination resistors (22Ω ± 1%) are

required for impedance matching of USB Bus. The USB Spec 1.1
states that the impedance of each driver is required to be between 28
and 44Ω. The PDIUSBD11’s Drive Output Resistance is 29Ω to 44Ω
max provided 22Ω ±1% series resistors are used.

13 DM AI/O USB D- Connection. Series termination resistors (22Ω ± 1%) are
required for impedance matching of USB Bus. The USB Spec 1.1
states that the impedance of each driver is required to be between 28
and 44Ω. The PDIUSBD11’s Drive Output Resistance is 29Ω to 44Ω
max provided 22Ω ±1% series resistors are used.

14 AGND Power Analog ground
15 AVCC Power Analog Supply 3.3V ± 0.3Volts. Normally connect to VCC through

some suppression to isolate any digital noise.
16 VBUS Input USB Power Sense. Full speed devices are identified by pulling D+ to

3.3V ± 0.3 Volts via a 1.5kΩ ± 5% resistor. This is build into the
PDIUSBD11 as part of Philip’s SoftConnectTM Technology. However
any USB device is not allowed to supply power to the USB Data lines
when the power has been removed, Thus the requirement of the
PDIUSBD11 to sense the USB Power line. While this pin is 5V
tolerant, it is normally connected to VBUS via a divider network to
reduce it to 3.3volts. Recommended values are 680kΩ & 320kΩ.

Using the PDIUSBD11 April 2002 www.beyondlogic.org

Example Schematic

SoftConnectTM

Note that the USB specification calls for a 1.5kΩ ± 5% (1425Ω to 1575Ω) pull up resistor on D+. Philips
specifies a SoftConnect pull up resistor with a range of 1.1kΩ minimum and a maximum of 1.9kΩ which
has a tolerance closer to ± 30%, than the USB Spec’s 5%. Philips specifies this in their data sheet ensuring
the design engineer that VSE voltage specification can still be meet and the end designer lies with the
option of using it or not.

Essentially if you use SoftConnect, it is out of spec and not USB compliant. You could use you own
termination resistor, but you have to find a 3.3V source to connect it too, bearing in mind that the VBUS is 5
volts. However as you will need a 3.3 Volt ± 0.3V supply for the PDIUSBD11 in bus powered designs this
should not be a problem. The other consequence of using an external pull up resistor is that it can only be
connected when VBUS is present. The USB specification states that no power can be applied to the data
lines in the absence of VBUS.This is once again not a problem for bus powered designs as you can still
connect it to your regulated 3.3V supply which is derived from VBUS

Self Powered or Bus Powered? Current Budgeting

The PDIUSBD11 doesn’t mention much about power consumption. Power consumption is big business
with USB, if you draw too much current, you violate the USB Spec. The PDIUSBD11 draws around 25mA
during normal operation. The data sheet specifies no minimum, maximum or typical values for power
consumption in fully operational nor suspends states!

A USB device specifies its power consumption expressed in 2mA units in the configuration descriptor. A
device cannot increase its power consumption, greater than what it specifies during enumeration, even if it
loses external power. There are three classes of USB functions, low power bus powered functions, high
power bus powered functions, and self powered functions.

TEST 1

RESET 2

OSC13

OSC24

CLKOUT 5VCC6

SUSPEND 7

INT 8

SDA 9

SCL 10

GND 11

D+12 D-13

AGND14

AVCC15

VBUS16

U1
PDIUSBD11

1
2
3
4

USB1

Type B

VCC
D-
D+
GND

X1 12Mhz
C1
22pf

C2
22pf

1
2
3
4

VCC
- Data
+ Data
GND

Contact No. Signal Name

USB Contact Numbers per USB1.1 Spec

1 2 3 4

Receptacle Series A Receptical Series B

12

3 4

R4 22
R5 22

C3

0.1uF

C6

1uF

R6
320K

R7
680K +3.3V

VCC

R8
4K

7

VCC

R9
4K

7

VCC

R1
0

4K
7

O.D.
O.D.
O.D. Data

Clock

INT

Vin1

G
2

Vout 3
U2 78L033VCC 3.3V

C4
0.1uF

+ C7
10uF

+ C8
10uF

C5

0.1uF

Fe
rri

te
 B

ea
d

3.3V

Suspend

VCC

R1
1

10
K

O.D.

Using the PDIUSBD11 April 2002 www.beyondlogic.org

Low power bus powered functions draw all it’s power from the VBUS and cannot draw any more than one
unit load. USB defines a unit load as 100mA. High power bus powered functions draw all it’s power from
the bus and cannot draw more than one unit load until they have been configured, after which it can then
drain 5 unit loads (500mA Max)

Self power functions may draw up to 1 unit load from the bus and derive the rest of it’s power from an
external source. Should this external source fail, it must have provisions in place to draw no more than 1
unit load from the bus. Self powered functions are easier to design to spec as there is not so much of an
issue with power consumption.

Bus Powered

During initialisation and enumeration the maximum power drain that USB 1.1 permits is 100mA. As the
PDIUSBD11 consumes approximately 25mA, there is a 75mA excess for the microcontroller and support
circuitry. A low powered device must be capable of operating on a minimum 4.40V to maximum 5.25v at
the plug of the USB device.

However during suspend, additional constrains come into force. The maximum suspend current is
proportional to the unit load. For a 1 unit load devices (default) the maximum suspend current is 500uA.
This includes current from the pull up and pull down resistors on the bus. The PDIUSBD11 drains
approximately 210uA during suspend. Of this approximately 200uA is due to the internal pull up resistor on
D+. This leaves approximately 290uA to play with.

However this is dependent on what we have done with VBUS. If you have used the 680KΩ/320KΩ voltage
divider then you are sinking 5µA into the divider network. The input leakage current of VBUS being a digital
I/O pin is 5µA max. Guy Jaumotte suggests this figure is closer to 1µA typical. Another consideration is the
required 3.3V regulator for bus powered designs.

Suspend Mode

Every USB device must support suspend. However this is another area the data sheet avoids.

The PDIUSBD11 can enter suspend mode in various ways such as,
• Selective Suspend – Host sends a suspend command to the attached port.
• Global Suspend – The host suspends its self.
• No activity on bus for more than 3 SOF ~ 3mS.

Each 1mS a SOF (Start of Frame) packet should be sent on the USB. This is the responsibility of the host.
When the bus goes into suspend, the SOF every 1mS will seize to exist. The PDIUSBD11 will wait for 3mS
without the presence of a SOF. It will then allow its Suspend pin to go high, signalling to the microcontroller
that it is about to enter the suspend state and to stop finishing any processing and go to sleep. The entire
USB device (PDIUSBD11, MicroController and Support Circuitry) must not drain anymore than 500uA from
VBUS when in suspend. This of course is not so much of an issue for Self Powered devices. 1mS after the
suspend pin goes low, the ClockOut will go into Lazy Clock Output if this feature is selected. These
features are selected by the Configuration Byte as detailed below.

Configuration Byte
No Lazy

Clock
(Bit 1)

Clock
Running

(Bit 2)

Selected Configuration Current Consumed

0 0

ClockOut will switch to Lazy Clock Mode (Frequency
30KHz ± 40%) 1mS after suspend pin goes high. Internal
Clock, Crystal Oscillator and PLL will stop during suspend,
consuming less power.

~2.5mA
(External µC will run at
slower speed, reducing

current if connected)

0 1

ClockOut will switch to Lazy Clock Mode (Frequency
30KHz ± 40%) 1mS after suspend pin goes high. Internal
Clock. Crystal Oscillator and PLL are always running
regardless of suspend mode.

~25mA
External µC will run at
slower speed, reducing

current if connected)

1 0 Internal Clock, Crystal Oscillator and PLL is stopped
during suspend as a result, ClockOut seizes to run.

~210µA
(Assuming SoftConnectTM

Active)

1 1
ClockOut stays at its original speed. The Internal Clock,
Crystal Oscillator and PLL are always running regardless
of suspend mode.

~25mA
(+ Full load of attached µC)

Using the PDIUSBD11 April 2002 www.beyondlogic.org

The PDIUSBD11 can come out of suspend in two ways
• Pull Suspend Pin Low.
• Resume Signal from Bus (Downstream to Device)

The data sheet is rather misleading in this area. With the suspend pin specified as an output only and the
resume command saying “This command is normally issued when the device is in suspend”, one would
assume you would simply send the Resume Command. This is not the case.

If the microcontroller wishes to wake up the PDIUSBD11, it pulls the suspend pin low. The PDIUSBD11 will
come out of suspend, but can’t talk on the Bus as there are no SOF Packets every 1mS. To wake up the
Host, the Send Resume command is then sent to the PDIUSBD11.

I2C Protocol Interface

The PDIUSBD11 uses the Philips I2C protocol which can be a little daunting if you have never used it
before. Unlike other serial buses such as SPI and Microwire which have individual chip selects, I2C sends
an address down the bus after a start condition. Only the device which has the matching address will
respond to the following commands until either a restart condition or a stop/start condition is generated
again. As I2C is multi-master, a restart condition will allow the host to re-issue an address without giving up
its control of the bus. Sending a stop condition means the device no longer requires the bus and should
another device want to talk on the bus, it can generate a start condition and take over as master.

Instead of the PDIUSBD11 having only one address as you would expect, the PDIUSBD11 has “three”
addresses for simplicity. This allows information about the data to follow e.g. is it command/data or
read/write to be efficiently encoded into the address. This is not entirely correct in the context of the I2C
specification, as it has two addresses (Command/Data) and a direction bit (LSBit) which specifies
read/write operations as shown below.

Function I2Caddress D Combined
“Address”

Command Write 0011 011 0 0x36
Data Write 0011 010 0 0x34
Data Read 0011 010 1 0x35

An example Write Command Cycle (Disable Hub Address) is shown below.

Start 0x36 A 0xD0 A Restart 0x34 A 0x00 A Stop
Write

Command Disable Hub Write Data Data Byte

Key
Master to PDIUSBD11
PDIUSBD11 to Master

A Ack
N Negative Ack

An example Read Command Cycle (Read Interrupt Register) is shown as follows,

Start 0x36 A 0xF4 A Restart 0x35 A 0x00 A 0x40 N Stop
Write

Command

Read
Interrupt
Register

Read Data Data Byte 1 Data Byte 2

Multiple commands can be sent after a write command.

Complicating matters further, when reading the PDIUSBD11, it must
place its serial line into input mode. However as multiple reads can
be performed after the one “Command Read” address, it has no
way of telling when to release the bus. Therefore the master must
acknowledge all bytes except for the last byte which it must return
an negative acknowledge.

Using the PDIUSBD11 April 2002 www.beyondlogic.org

Initialisation

The wafer of the PDIUSBD11 is the same in both the HUB (PDIUSBH11A) and Device/Function chips
(PDIUSBD11). What Philips Semiconductor omits from the data sheet is that you need to disable the hub
before you can use the embedded function. Failure to do so, will result in setup packets being received on
the HUB’s default port and not the embedded functions. They do however mention the initialisation in their
FAQ but have once again missed it in their latest revision of the data sheet, dated 22 July 1999. (Before
that, one could off assumed they lost the original/editable data sheet!)

“The PDIUSBD11 is effectively the embedded function 1 of a PDIUSBH11A(HuB). We have taken the silicon of the
PDIUSBH11A and bounded the embedded function 1. This has for consequence that the HUB is still present and
active inside the PDIUSBD11. The Hub part MUST be disabled at power-on and AFTER Bus reset by sending the
command 0xD0(Set Address(Hub)) and writing the data 0x00(Address 0 disabled). The same can be done for the
hub endpoints.” Guy.Jaumotte@Philips.com

Another thing you must note, is that the HUB is re-enabled on a Bus Reset. It is therefore, necessary to
disable the hub and enable the Embedded Function every time a Bus Reset Interrupt occurs.

The recommended Initialisation sequence is,

/* Disable Hub Function in PDIUSBD11 */
SET_HUB_ADDRESS(0xD0) to 0x00

/* Set Address to zero (default) and enable function */
SET_ADDRESS_ENABLE(0xD1) to 0x80

/* Enable function generic endpoints */
SET_ENDPOINT_ENABLE(0xD8) to 0x02

/* Set Mode - Enable SoftConnect */
SET_MODE(0xF3) to 0x97; /* Embedded Function, SoftConnect, Clk Run, */

/* No LazyClk, Remote Wakeup */
and byte 2 to 0x0B; /* CLKOut = 4MHz */

Notes :
(1) http://www-eu3.semiconductors.com/usb/products/interface/pdiusbd11/faq/#2.1 PDIUSBD11 FAQ

(2) SoftConnectTM is a patent pending technology from Philips Semiconductors

Using the PDIUSBD11 April 2002 www.beyondlogic.org

PDIUSBD11 Command Summary
Set Address / Enable

Command 0xD0 Set Hub Address Data Command followed by a Write of One Data Byte
0xD1 Set Embedded Function 1’s Address with the format below.
0xD2 Embedded Function Two (PDIUSBH11)
0xD3 Embedded Function Three (PDIUSBH11)

7 6 5 4 3 2 1 0
Enable Address

This command will enable the desired function (bit 7) and set its address. A ‘1’ in bit 7 enables the function. The
low seven bits are used to set the function’s address. When first powered up, an address of zero is used, until the
Host issues the Set Address Device Request (Chapter 9 USB Spec) during enumeration.

The PDIUSBD11 contains the same silicon than the Philips PDIUSBH11A HUB. As a result, the HUB powers up
enabled and thus needs to be turned off at initialisation and after a Bus Reset.

Set Endpoint Enable

Command 0xD8 Set Endpoint Enable Data Command followed by a Write of One Data Byte
with the format below

7 6 5 4 3 2 1 0
X X X X 0 0 0 0 Power on Reset

Reserved Reserved Reserved Reserved Reserved Reserved
Generic

Endpoint
Enable

Reserved

When the function is enabled, only its Default Control Pipe (Endpoint 2 & 3) are enabled. During enumeration, your
device will describe to the host the type of Generic Endpoints it wishes to use in the form of an Endpoint Descriptor.
Later during enumeration the host will send the Set Configuration Device Request (Chapter 9 USB Spec). At this
point you can enable your Generic Endpoints. Note that many devices will enable the Generic Endpoints at Power
Up and this does not effect the functionality of the device.

Endpoint No. Endpoint Index Endpoint Type Direction

0 2
3 Control / Default Out

In

1 5
4 Generic Out

In

2 6
7 Generic Out

In

3 8
9 Generic Out

In
Note : Endpoint 1’s endpoint indexes are swapped. This is not an error – Index 5 is EP1 Out, Index 4 is EP1 In

Set Mode

Command 0xF3 Set Mode Data Command followed by writing two data bytes
with format below,

Byte 1 - Configuration
7 6 5 4 3 2 1 0
1 0 0 0 1 1 0 1 Power on Reset

Embedded
Function

Mode
X X Soft

Connect
Debug
Mode

Clock
Running

No Lazy
Clock

Remote
Wakeup

Remote Wakeup Setting this bit enables the Remote Wakeup Feature. A bus reset will enable this function.
No Lazy Clock Clearing this bit, ensures the clock will not switch to lazy clock mode (~30kHz) 1ms after

Suspend. This value does not change on a Bus Reset.

Using the PDIUSBD11 April 2002 www.beyondlogic.org

Clock Running The setting of this bit will ensure the clock & phase lock loop is always running even in
suspend. Use this mode with self powered devices. Bus powered devices will need to set
this bit to 0 to ensure the maximum load specifications during suspend is meet.

Debug Mode Setting this bit will cause all errors and negative acknowledgments to be reported. If Clear
only OK and babbling is shown.

Soft Connect Setting this bit will enable the pull up resistor on D+ to be connected when VBUS is present.
This value is not changed by reset.

Embedded Function
Mode / Future Mode

For normal operation, set this bit. The PDIUSBH11 uses this bit to enable multiple
embedded functions. It has not yet be determined if this will work with the hub disabled.
See the PDIUSBH11A data sheet for more details.

Byte 2 – Clock Divider
7 6 5 4 3 2 1 0
X X 0 0 0 0 1 1 Power on Reset
X X Clock Divisor

Byte 2 sets the frequency of the clock output. Should you desire either a default 4MHz clock or do not wish to use
the clock then this byte can be ignored. The power on value is 3 giving a default clock out of 4MHz which is quite
common for many microcontrollers. Of course faster microcontrollers can power up on 4Mhz and then set the Mode
to run at their full speed. The expected clock frequency is 48MHz/(N+1) where N is the clock divisor.

The PDIUSBD11 data sheet shows only the low nibble being used. However after accidental playing, it was found
to be the same than the PDIUSBH11A, using the lowest 6 bits for the divisor. Thus care must be taken with the
extra two bits. They are NOT don’t cares as the data sheet would suggest.

Read Interrupt Register

Command 0xF4 Read Interrupt Register Data Read Two Data Bytes

Interrupt Register Byte 1
7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 Power on Reset

EndPoint
Index 7

Endpoint
Index 6

Endpoint
Index 5

Endpoint
Index 4

Control In
Endpoint

Control
Out

Endpoint

Reserved
(Hub)

Reserved
(Hub)

Interrupt Register Byte 2
7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 Power on Reset

Reserved Bus
Reset Reserved Reserved Reserved Reserved Endpoint

Index 8
Endpoint
Index 9

After an interrupt has occurred a read of this command will show what event caused the interrupt. Each bit is
cleared by reading the “Read Last Transaction Status” 3. However should a Bus Reset Interrupt occur, reading the
Interrupt Register (0xF4) will clear this flag.

The Interrupt pin on the PDIUSBD11 is an active low signal which gets pulled low after an interrupt has occurred
and remains their until all interrupts are cleared. Most microcontrollers will accept an Edge Sensitive Interrupt,
however few will accept a Level Sensitive Interrupt. There are two ways of approaching this problem. What Philips
does in many of their examples is simply poll the interrupt register continuously and branch to a handler should an
interrupt be pending. This opens up the use of the INT pin on the microcontroller to other possibilities.

The other option is to generate an interrupt on the falling edge and when the first handler has finished, before
returning from the interrupt, check if any other interrupts are still pending and if so handle these. This way, not all
you idle cycles are being taken up with polling the interrupt register.

Note 3 : The PDIUSBD11 Data Sheet would suggest that the Interrupt Register is cleared by reading the “Read Endpoint Status
Command”. This is an error that Philips Semiconductors acknowledges in their FAQ. Please refer to
http://www-eu3.semiconductors.com/usb/products/interface/pdiusbd11/faq.html#4.1 – “4.1 How is the Interrupt Flag cleared?”
Also note that this error is still not fixed in their latest revision of the Data Sheet dated 22nd July 1999

Using the PDIUSBD11 April 2002 www.beyondlogic.org

Select Endpoint

Command 0x02 Select Control Out Endpoint Data Read One Byte – Optional
0x03 Select Control In Endpoint
0x04 Select Generic Endpoint 1 IN
0x05 Select Generic Endpoint 1 OUT
0x06 Select Generic Endpoint 2 OUT
0x07 Select Generic Endpoint 2 IN
0x08 Select Generic Endpoint 3 OUT
0x09 Select Generic Endpoint 3 IN

7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 Power on Reset

Reserved Reserved Reserved Reserved Reserved Reserved Reserved Buffer
Full

This command will select the desired endpoint (Set the Internal Pointer) for a subset of commands. Changing
endpoints will reset the pointer. An optional byte can be read to determine if the Endpoint Buffer selected is full or
empty. This is seldom used in the interest of efficiency, as the Read Endpoint Status command will indicate if the
Buffer is full plus other information. It bit 1 is set, then the Buffer is Full.

Read Last Transaction Status

Command 0x42 Read Last Transaction Status for the Control Out Endpoint Data Read One Byte
0x43 Read Last Transaction Status for the Control In Endpoint
0x44 Read Last Transaction Status for the Generic Endpoint 1 IN
0x45 Read Last Transaction Status for the Generic Endpoint 1 OUT
0x46 Read Last Transaction Status for the Generic Endpoint 2 OUT
0x47 Read Last Transaction Status for the Generic Endpoint 2 IN
0x48 Read Last Transaction Status for the Generic Endpoint 3 OUT
0x49 Read Last Transaction Status for the Generic Endpoint 3 IN

7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 Power on Reset

Previous
Status

not Read

Data 0/1
Packet

Setup
Packet Error Code

Data
Receive
Transmit
Success

This command is intended for debugging. It will return a byte showing the status of the last transaction on the
requested Endpoint without resetting any internal pointers set by the Set Endpoint Command.

Code Error
0000 No Error
0001 PID Encoding Error
0010 PID Unknown
0011 Unexpected Packet
0100 Token CRC Error
0101 Data CRC Error
0110 Time Out Error
0111 Babble Error
1000 Unexpected End of Packet
1001 Sent or Received NAK
1010 Sent Stall
1011 Overflow Error
1101 BitStuff Error
1111 Wrong DATA PID

Using the PDIUSBD11 April 2002 www.beyondlogic.org

Read Endpoint Status

Command 0x82 Read Control OUT Endpoint Status Data Read One Byte
0x83 Read Control IN Endpoint Status
0x84 Read Generic Endpoint 1 IN Endpoint Status
0x85 Read Generic Endpoint 1 OUT Endpoint Status
0x86 Read Generic Endpoint 2 OUT Endpoint Status
0x87 Read Generic Endpoint 2 IN Endpoint Status
0x88 Read Generic Endpoint 3 OUT Endpoint Status
0x89 Read Generic Endpoint 3 IN Endpoint Status

7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 Power on Reset

Reserved Reserved Buffer
Full

Data 0/1
Packet Stalled Setup

Packet Reserved Reserved

Read Buffer / Write Buffer

Command 0xF0 Read Buffer Data Read up to 10 Bytes
0xF0 Write Buffer Data Write up to 10 Bytes

The same command is sent to Read or Write Data. The desired operation is selected by the data phase. The
PDIUSBD11 contains an area of linear RAM segmented into Endpoint buffers. The Read or Write Commands will
not set the PDIUSBD11’s Internal RAM pointer to the start of the particular 8 byte buffer. This is done using the
Select Endpoint Command.

After a byte has been written or read the internal pointer is incremented. Beware that there is no protection from
reading or writing into the next endpoint’s buffer.

The Data in the Buffer has the following format.

Offset 0 Offset 1 Offset 2 Offset 3 …. Offset 9
Reserved

Undefined Value
Number of bytes

to follow Byte 1 Byte2 Byte 8

Clear Buffer

Command 0xF2 Data None

After a packet has been received the buffer full flag is set and the PDIUSBD11 will issue NAK to additional packets
send to the endpoint until the Buffer Clear Flag is cleared. Therefore once data has been received it should be read
and on completion of reading the data the clear buffer command should be issued to enable subsequent packets to
be received. Failure to do so will inhibit an more packets being received on this endpoint.

Validate Buffer

Command 0xFA Data None

Once data has been written to a IN Buffer, the Validate Buffer command should be set. This tells the PDIUSBD11
that the data is complete and should be sent when the next IN Token is received.

Using the PDIUSBD11 April 2002 www.beyondlogic.org

Set Endpoint Status

Command 0x42 Set Control OUT Endpoint Status Data Write one byte with the following format
0x43 Set Control IN Endpoint Status
0x44 Set Generic Endpoint 1 IN Endpoint Status
0x45 Set Generic Endpoint 1 OUT Endpoint Status
0x46 Set Generic Endpoint 2 OUT Endpoint Status
0x47 Set Generic Endpoint 2 IN Endpoint Status
0x48 Set Generic Endpoint 3 OUT Endpoint Status
0x49 Set Generic Endpoint 3 IN Endpoint Status

7 6 5 4 3 2 1 0
X X X X X X X 0 Power on Reset

Reserved Reserved Reserved Reserved Reserved Reserved Reserved Stalled

This command can be used to stall endpoints. Endpoints can be stalled, if they are not in use or if a command is
not supported, among other reasons. A Setup Packet will be received regardless if the endpoint is stalled or not.
Should the endpoint be stalled when it receives a Setup Packet, another Set Endpoint Status command will need to
be sent to stall the endpoint again.

If a Zero is written to un-stall an endpoint, even if the endpoint is already un-stalled, the buffer is cleared and If the
endpoint is an IN endpoint, the PDIUSBD11 will send a DATA 0 PID to the host. If the endpoint is an OUT Endpoint
the PDIUSBD11 will wait for a DATA0 PID. This procedure is the same should a Setup Packet un-stall the
Endpoint.

The Set Endpoint Status shares the same command numbering than the Read Last Transaction Status. The data
phase will determine which command is sought after.

Acknowledge Setup

Command 0xF1 Data None

When a Setup Packet is received, the PDIUSBD11 will clear the Control IN Endpoint Buffer, and disable the
Validate Buffer and Clear Buffer commands until the packet is acknowledged by the controller, by sending the
Acknowledge Setup Command to both IN & OUT Control Endpoints.

This prevents the Setup packet from being overridden and any packets being sent back to the host.

Send Resume

Command 0xF6 Data None

This command will send the resume signal upstream to the hub or host. This can be used to wake the host up.

Read Current Frame Number

Command 0xF5 Data Read One or Two Bytes

The Read Current Frame Number can be used to return the current 16 Bit Frame Number of the last SOF received
successfully. The LSByte is returned first, followed by the MSByte.

Copyright 2001, Craig Peacock (Craig.Peacock@beyondlogic.org)

Third Release 6th April 2002
Second Release 20th December 2001

First Release 22nd January 2000 - Draft

